971 resultados para Familial melanoma
Resumo:
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.
Pharmacokinetics of temozolomide : a pilot study in malignant melanoma and malignant glioma patients
Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion.
Resumo:
T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed "exhausted" T cells. We compared the transcriptome of "exhausted" CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf.
Resumo:
Before 2011, patients with advanced or metastatic melanoma had a particularly poor long-term prognosis. Since traditional treatments failed to confer a survival benefit, patients were preferentially entered into clinical trials of investigational agents. A greater understanding of the epidemiology and biology of disease has underpinned the development of newer therapies, including six agents that have been approved in the EU, US and/or Japan: a cytotoxic T-lymphocyte antigen-4 inhibitor (ipilimumab), two programmed cell death-1 receptor inhibitors (nivolumab and pembrolizumab), two BRAF inhibitors (vemurafenib and dabrafenib) and a MEK inhibitor (trametinib). The availability of these treatments has greatly improved the outlook for patients with advanced melanoma; however, a major consideration for physicians is now to determine how best to integrate these agents into clinical practice. Therapeutic decisions are complicated by the need to consider patient and disease characteristics, and individual treatment goals, alongside the different efficacy and safety profiles of agents with varying mechanisms of action. Long-term survival, an outcome largely out of reach with traditional systemic therapies, is now a realistic goal, creating the additional need to re-establish how clinical benefit is evaluated. In this review we summarise the current treatment landscape in advanced melanoma and discuss the promise of agents still in development. We also speculate on the future of melanoma treatment and discuss how combination and sequencing approaches may be used to optimise patient care in the future.