920 resultados para Faisceau occipito-frontal (FOF)
Resumo:
Estimulação transcraniana por corrente contínua (ETCC) sobre áreas corticais pré-selecionadas, tem aumentado o desempenho físico de diferentes populações. Porém, lacunas persistem no tocante aos mecanismos subjacentes à estes efeitos. Assim, a presente tese objetivou: a) investigar os efeitos da ETCC anódica (aETCC) e placebo (Sham) no córtex motor (CM) de indivíduos saudáveis sobre o desempenho de força máxima; b) comparar os efeitos da ETCC sobre a produção de força máxima e estabilidadade da força durante exercícios máximo e submáximo em sujeitos hemiparéticos e saudáveis; c) investigar o efeito da ETCC sobre a conectividade funcional inter-hemisférica (coerência eletroencefalográfica cEEG) do córtex pré-frontal (CPF), desempenho aeróbio e dispêndio energético (EE) durante e após exercício máximo e submáximo. No 1 estudo, 14 adultos saudáveis executaram 2 sessões de exercício máximo de força (EMF) dos músculos flexores e extensores do joelho dominante (3 séries de 10 rep máximas), precedidos por aETCC ou Sham (2mA; 20 mim). aETCC não foi capaz de aumentar o trabalho total e pico de torque (PT), resistência à fadiga ou atividade eletromiográfica durante o EMF. No 2 estudo, 10 hemiparéticos e 9 sujeitos saudáveis receberam aETCC e Sham no CM. O PT e a estabilidade da força (coeficiente de variação - CV) foram avaliados durante protocolo máximo e submáximo de extensão e flexão unilateral do joelho (1 série de 3 reps a 100% do PT e 2 séries de 10 reps a 50% do PT). Nenhuma diferença no PT foi observada nos dois grupos. Diminuições no CV foram obervadas durante a extensão (~25-35%, P<0.001) e flexão de joelho (~22-33%, P<0.001) após a aETCC comparada com Sham nos hemiparéticos, entretanto, somente o CV na extensão de joelhos diminuiu (~13-27%, P<0.001) nos saudáveis, o que sugere que aETCC pode melhorar o CV, mas não o PT em sujeitos hemiparéticos. No 3 estudo, 9 adultos saudáveis realizaram 2 testes incrementais máximos precedidos por aETCC ou Sham sobre o CPF com as respostas cardiorrespiratórias, percepção de esforço (PSE) e cEEG do CPF sendo monitoradas. O VO2 de pico (42.64.2 vs. 38.23.3 mL.kg.min-1; P=0,02), potência total (252.776.5 vs. 23773.3 W; P=0,05) e tempo de exaustão (531.1140 vs. 486.7115.3 seg; P=0,04) foram maiores após aETCC do que a Sham. Nenhuma diferença foi encontrada para FC e PSE em função da carga de trabalho (P>0,05). A cEEG do CPF aumentou após aETCC vs. repouso (0.700.40 vs. 0.380.05; P=0,001), mas não após Sham vs. repouso (0.360.49 vs. 0.330.50; P=0,06), sugerindo que a aETCC pode retardar a fadiga aumentando a conectividade funcional entre os hemisférios do CPF e desempenho aeróbio durante exercício exaustivo. No 4 estudo, o VO2 e EE foram avaliados em 11 adultos saudáveis antes, durante a aETCC ou Sham no CPF e 30 min após exercício aeróbio submáximo isocalórico (~200kcal). Diferenças não foram observadas no VO2 vs. repouso durante aETCC e Sham (P=0.95 e P=0.85). Porém, a associação entre exercício e aETCC aumentou em ~19% o EE após ao menos, 30 min de recuperação após exercício quando comparada a Sham (P<0,05).
Resumo:
Lengths and ages of sword-fish (Xiphias gladius) estimated from increments on otoliths of larvae collected in the Caribbean Sea, Florida Straits, and off the southeastern United States, indicated two growth phases. Larvae complete yolk and oil globule absorption 5 to 6 days after hatching (DAH). Larvae <13 mm preserved standard length (PSL) grow slowly (~0.3 mm/d); larvae from 13 to 115 mm PSL grow rapidly (~6 mm/d). The acceleration in growth rate at 13 days follows an abrupt (within 3 days) change in diet, and in jaw and alimentary canal structure. The diet of swordfish larvae is limited. Larvae <8 mm PSL from the Caribbean, Gulf of Mexico, and off the southeastern United States eat exclusively copepods, primarily of one genus, Corycaeus. Larvae 9 to 11 mm eat copepods and chaetognaths; larvae >11 mm eat exclusively neustonic fish larvae. This diet indicates that young larvae <11 mm occupy the near-surface pelagia, whereas, older and longer larvae are neustonic. Spawning dates for larvae collected in various regions of the western North Atlantic, along with the abundance and spatial distribution of the youngest larvae, indicate that spawning peaks in three seasons and in five regions. Swordfish spawn in the Caribbean Sea, or possibly to the east, in winter, and in the western Gulf of Mexico in spring. Elsewhere swordfish spawn year-round, but spawning peaks in the spring in the north-central Gulf of Mexico, in the summer off southern Florida, and in the spring and early summer off the southeastern United States. The western Gulf Stream frontal zone is the focus of spawning off the southeastern coast of the United States, whereas spawning in the Gulf of Mexico seems to be focused in the vicinity of the Gulf Loop Current. Larvae may use the Gulf of Mexico and the outer continental shelf off the east coast of the United States as nursery areas. Some larvae may be transported northward, but trans-Atlantic transport of larvae is unlikely.
Resumo:
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.
Resumo:
On the basis of observation data of water temperature and salinity the mean seasonal geostrophic circulation in open region of the South China Sea (SCS) was computed by the dynamic method relative to the 800 decibar reference surface. The results of computation let go to following notices: In both main monsoons (winter and summer) there are two main geostrophic eddies: the anticlockwise eddy in the northern and northwestern part, and the clockwise eddy in the southern part of the SCS with corresponding divergent and convergent zones. The main frontal zones go along the middle latitudes of the sea from the southern continental shelf of Vietnam to the area west of Luzon Island. The strength and stability of the current in winter are higher than in summer. The Kuroshio has an enough strong branch intruding into the SCS through Bashi Strait in winter creating in the sea the water structure similar to that of the Northwest Pacific subtropical and tropical regions. In summer the Kuroshio water can intrude directly only into the area southwest of Taiwan.
Resumo:
In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations (Ca(2+)i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (A
Resumo:
The abilities to plan a series of movements and to navigate within the environment require the functions of the frontal and ventromedial temporal lobes, respectively. Neuropsychological studies posit the existence of egocentric (prefrontal) and allocentri
Resumo:
Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In economic decision making, outcomes are described in terms of risk (uncertain outcomes with certain probabilities) and ambiguity (uncertain outcomes with uncertain probabilities). Humans are more averse to ambiguity than to risk, with a distinct neural system suggested as mediating this effect. However, there has been no clear disambiguation of activity related to decisions themselves from perceptual processing of ambiguity. In a functional magnetic resonance imaging (fMRI) experiment, we contrasted ambiguity, defined as a lack of information about outcome probabilities, to risk, where outcome probabilities are known, or ignorance, where outcomes are completely unknown and unknowable. We modified previously learned pavlovian CS+ stimuli such that they became an ambiguous cue and contrasted evoked brain activity both with an unmodified predictive CS+ (risky cue), and a cue that conveyed no information about outcome probabilities (ignorance cue). Compared with risk, ambiguous cues elicited activity in posterior inferior frontal gyrus and posterior parietal cortex during outcome anticipation. Furthermore, a similar set of regions was activated when ambiguous cues were compared with ignorance cues. Thus, regions previously shown to be engaged by decisions about ambiguous rewarding outcomes are also engaged by ambiguous outcome prediction in the context of aversive outcomes. Moreover, activation in these regions was seen even when no actual decision is made. Our findings suggest that these regions subserve a general function of contextual analysis when search for hidden information during outcome anticipation is both necessary and meaningful.
Resumo:
Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.
Resumo:
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones. © 2012 American Geophysical Union All Rights Reserved.
Resumo:
Two new species of myxosporeans (Myxosporea: Myxidiidae), Myxidium tuanfengensis sp. n. and Zschokkella saurogobionis sp. n., Parasitic in freshwater fishes collected from the Yangtze River of China are described in this paper. M. tuanfengensis was found in the liver parenchyma and intestine lumen of Leptobotia taeniops Sauvage, 1878, while Z. saurogobionis was found in the gall bladder of Saurogobio dumerili Bleeker, 1871. The diagnostic characters of M. tuanfengensis are: round or elliptical polysporous plasmodia averaging 118 mum in size; spore oval in frontal view with smooth surface and nearly spindle-shape in sutural view with slightly sinuous sutural ridge, averaging 19.5 x 9.75 x 8.9 mum in size; two large spherical polar capsules 6.8 mum in diameter, with polar filament wound in 4 to 5 coils. The diagnostic characters of Z. saurogobionis are: spore elliptical in both frontal and sutural view measuring 18.3 x 9.8 x 10.8 mum in size; fine sutural ridge in S-form, spore shell marked with 10 to 12 distinct lines paralleled with the sutural line; two spherical polar capsules, 6.7 mum in diameter, with polar filament in 5 coils.
Resumo:
An effective face detection system used for detecting multi pose frontal face in gray images is presented. Image preprocessing approaches are applied to reduce the influence of the complex illumination. Eye-analog pairing and improved multiple related template matching are used to glancing and accurate face detecting, respectively. To shorten the time cost of detecting process, we employ prejudge rules in checking candidate image segments before template matching. Test by our own face database with complicated illumination and background, the system has high calculation speed and illumination independency, and obtains good experimental results.
Resumo:
Capillary electrophoresis (CE) has been abundantly used in the study of molecular interactions owing to such advantages as short analysis time, low sample size requirement, high separation efficiency, and flexible applications. The focus of this paper is to 2 review recent studies and advances (mainly from 1998 to now) in biomolecular interactions using CE. Five CE modes: zone migration CE, affinity CE, frontal analysis (FA), Hummel-Dreyer (HD) and vacancy peak (VP) are cited and compared. Quantitative aspects of the thermodynamics and kinetics of biomolecular interaction are reviewed. Several biomolecular binding systems, including protein-protein (polypeptide), protein-DNA (RNA), protein(polypeptide)-carbohydrate, protein-small molecule, DNA-small molecule, small molecule-small molecule, have been well characterized by CE. CE is shown to be a powerful tool for the determination of the binding parameters of various bioaffinity interactions.
Resumo:
Human serum albumin (HSA) was successfully bonded to silica with s-triazine as activator. The coupling reaction by this method was rapid and effective. The triazine-activated silica is relatively stable and can be installed for at least 1 month without obvious loss of reactivity when stored below 30 degreesC, pH below 7. It was observed that the amount of bound HSA reached 120 mg/g silica calculated from the UV absorbance difference of the HSA solution. d,l-tryptophan was selected as the probe solute to characterize the properties of HSA bonded s-triazine chiral stationary phase, and separation factor of 9.4 was obtained for d,l-tryptophan. Furthermore, the amount of effective HSA on silica was measured by high-performance frontal analysis, and only 16.8 mg/g silica was responsible for the resolution of d,l-tryptophan. These results indicate that the amount of both the bound and effective HSA on silica with triazine as activator was much higher than those by the Schiff base coupling method. Different kinds of enantiomers were resolved successfully on the aminopropylsilica-bonded HSA s-triazine chiral stationary phase. (C) 2000 Wiley-Liss, Inc.
Resumo:
Based on high resolution 2D and 3D seismic data acquired in recent years, using sequence stratigraphy analysis and geophysical methods, we discuss the features of Late Cenozoic deepwater sedimentation in the southern Qiongdongnan (sic) basin. The study area entered a bathyal slope environment in the Miocene. The channel developed in the Sanya (sic) Formation was controlled by a fault break, and its shingled seismic characteristics represent multiple erosion and fill, which may indicate that turbidite current developed in the slope environment. The polygon faults found in mudstone of the Meishan (sic) Formation represent the deepwater hungry sedimentary environment. The large-scale channels developed on the top of Huangliu (sic) Formation could be the result of a big sea level drop and an increase of sediment supply. The fantastic turbidite channel developed in Late Quaternary in the slope environment has "fan-like" body and long frontal tiny avulsion channel. The analysis of these features suggests that the sediment supply of the study area in the post-rifting period was dominant from the Vietnam uplift in the southwest. These deepwater sedimentary features could be potential reservoirs or migration pathways for deepwater petroleum systems.