955 resultados para FIELD-EFFECT TRANSISTOR
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.
Resumo:
Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or the entorhinal cortex were submitted to either a one-trial inhibitory avoidance task, or to 5 min of habituation to an open field. Immediately after training, they received intrahippocampal or intraentorhinal 0.5-µl infusions of saline, of a vehicle (2% dimethylsulfoxide in saline), of the glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphono pentanoic acid (AP5), of the protein kinase A inhibitor Rp-cAMPs (0.5 µg/side), of the calcium-calmodulin protein kinase II inhibitor KN-62, of the dopaminergic D1 antagonist SCH23390, or of the mitogen-activated protein kinase kinase inhibitor PD098059. Animals were tested in each task 24 h after training. Intrahippocampal KN-62 was amnestic for habituation; none of the other treatments had any effect on the retention of this task. In contrast, all of them strongly affected memory of the avoidance task. Intrahippocampal Rp-cAMPs, KN-62 and AP5, and intraentorhinal Rp-cAMPs, KN-62, PD098059 and SCH23390 caused retrograde amnesia. In view of the known actions of the treatments used, the present findings point to important biochemical differences in memory consolidation processes of the two tasks.
Resumo:
Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years) at rest and under trains of intermittent photic stimulation (IPS) at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP). For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest) thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.
Resumo:
If a dot is flashed in perfect alignment with a pair of dots rotating around the visual fixation point, most observers perceive the rotating dots as being ahead of the flashing dot (flash-lag effect). This perceptual effect has been interpreted to result from the perceptual extrapolation of the moving dots, the differential visual latencies between flashing and moving stimuli, as well as the modulation of attentional mechanisms. Here we attempted to uncouple the attentional effects brought about by the spatial predictability of the flashing dot from the sensory effects dependent on its visual eccentricity. The stimulus was a pair of dots rotating clockwise around the fixation point. Another dot was flashed at either the upper right or the lower left of the visual field according to three separate blocked situations: fixed, alternate and random positions. Twenty-four participants had to judge, in all three situations, the location of the rotating dots in relation to the imaginary line connecting the flashing dot and the fixation point at the moment the dot was flashed. The flash-lag effect was observed in all three situations, and a clear influence of the spatial predictability of the flashing dot on the magnitude of the perceptual phenomenon was revealed, independently of sensory effects related to the eccentricity of the stimulus in the visual field. These findings are consistent with our proposal that, in addition to sensory factors, the attentional set modulates the magnitude of the differential latencies that give rise to the flash-lag phenomenon.
Resumo:
The growing pharmaceutical interest, among others, in the polymorphic composition of the emerging solid end-products from production processes has been traced to the need for attainment of high product purity. This is more so as the presence of different polymorphs may constitute physical impurity of the product. Hence, the need for optimization of the yield of desired product component(s) through controlled crystallization kinetics for instance. This study was carried out to investigate the impact of pulsed electric field (PEF) irradiation on the crystal morphology of glycine obtained by cooling crystallization (without seeding) from commercial glycine sample in distilled deionized water solution. In doing so, three different pulse frequencies (294, 950 and 145 Hz) and a case without PEF were studied at three cooling rates (5, 10 and 20 ºC/h). The crystal products obtained were analyzed for polymorphic composition by powder x-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy while the particles characterization was done on Morphologi G3. The results obtained from this study showed that pulsed electric field irradiation had significant impact on metastability of the aqueous solution as well as on the polymorphic composition of the end product. With increasing PEF frequency applied, nucleation started earlier and the γ-glycine polymorph content of the product crystals increased. These were found to have been aided by cooling rate, as the most significant effect was observed at 5 ºC/h. It was also discovered that PEF application had no measurable impact on the pH of the aqueous solution as well as the size distribution of the particles. Cooling on the contrary was believed to be responsible for the broadening of the particle size distribution with a downward shift of the lower limit of the raw material from about 100 μm to between 10 and 50 μm.
Resumo:
Nasopharyngeal bacteria can asymptomatically colonize the nasopharynx of infants and young children but are also associated with the development of respiratory infections and diseases. Such nasopharyngeal bacteria include Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae and Staphylococcus aureus. The host defense against invading pathogens is largely relies germline-encoded pattern recognition receptors (PRR), which are expressed on the cells of innate immunity, and different cytokines. These include toll-like receptors (TLR), mannose-binding lectin (MBL) and different cytokines such as IL-17A. Single nucleotide polymorphisms (SNP) in these receptors and cytokines have been reported. The aim of this study was to investigate genetic polymorphisms in the genes for TLR2, 3 and 4, MBL as well as for IL-17A and their associations with nasopharyngeal pathogenic bacterial colonization during a two-year follow-up. The study revealed that polymorphisms in TLRs, MBL2 and IL17A are associated with the nasopharyngeal bacterial colonization in young children. Healthy young (2.6 months of age) children with variant types of MBL2, TLR2 R753Q or TLR4 D299G had an increased risk to be colonized by S. pneumonia, S. aureus or M. catarrhalis, respectively. Moreover, variant types of MBL2 in healthy children with might facilitate human rhinovirus (HRV)-induced S. pneumoniae colonization at 2.6 months of age. The polymorphism of TLR4 D299G was shown to be associated with M. catarrhalis colonization throughout the whole two-year follow-up (2.6, 13 and 24 months of age) and also with the bacterial load of this pathogen. Also, the polymorphism of IL17A G152A was shown to be associated with increased risk to be colonized by S. pneumoniae at 13 and 24 months of age. Furthermore, the results suggest that IL17A G152A has an effect on production of serum IL-17A already at young age. In conclusion, the results of this study indicate that polymorphisms in the key PRRs and IL17A seem to play an important role to colonization of S. pneumoniae, M. catarrhalis, and S. aureus in healthy young Finnish children. The nasopharyngeal colonization by these pathogenic bacteria may further promote the development of respiratory infections and may be related to development of asthma and allergy in the later life of children. These findings offer a possible explanation why some children have more respiratory infections than other children and provide a rational basis for future studies in this field.
Resumo:
The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.
Resumo:
Erythrina velutina (EV) and Erythrina mulungu (EM), popularly used in Brazil as tranquilizing agents, were studied. The effects of acute and chronic oral treatment with a water:alcohol extract of EV (7:3, plant grounded stem bark; acute = 100, 200, 400 mg/kg; chronic = 50, 100, 200 mg/kg) were evaluated in rats (N = 11-12) submitted to the elevated T-maze (for avoidance and escape measurements) model of anxiety. This model was selected for its presumed capacity to elicit specific subtypes of anxiety disorders recognized in clinical practice: avoidance has been related to generalized anxiety and escape to panic. Additionally, animals were treated with the same doses of EV and EM (water:alcohol 7:3, inflorescence extract) and submitted to the forced swim test for the evaluation of antidepressant activity (N = 7-10). Both treatment regimens with EV impaired elevated T-maze avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (avoidance 1, mean ± SEM, acute study: 131.1 ± 45.5 (control), 9.0 ± 3.3 (diazepam), 12.7 ± 2.9 (200 mg/kg), 28.8 ± 15.3 (400 mg/kg); chronic study: 131.7 ± 46.9 (control), 35.8 ± 29.7 (diazepam), 24.4 ± 10.4 (50 mg/kg), 29.7 ± 11.5 (200 mg/kg)). Neither EV nor EM altered measurements performed in the forced swim test, in contrast to the reference drug imipramine that significantly decreased immobility time after chronic treatment. These results were not due to motor alterations since no significant effects were detected in an open field. These observations suggest that EV exerts anxiolytic-like effects on a specific subset of defensive behaviors which have been associated with generalized anxiety disorder.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.
Resumo:
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor® (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Resumo:
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.
Resumo:
Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days) administration of H. gordonii extract (25 and 50 mg/kg, po) to mice exposed to a forced swimming test (FST). Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT) synthesis], NAN-190 (a 5-HT1A antagonist), ritanserin (a 5-HT2A/2C antagonist), ondansetron (a 5-HT3A antagonist), prazosin (an α1-adrenoceptor antagonist), SCH23390 (a D1 receptor antagonist), yohimbine (an α2-adrenoceptor antagonist), and sulpiride (a D2 receptor antagonist). A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.
Resumo:
In this work, the magnetic field penetration depth for high-Tc cuprate superconductors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature superconductivity. This model involves a "hopping" of Cooper pairs between layers of the unit cell which acts to amplify the pairing mechanism within the planes themselves. Recent work has shown that this model can account reasonably well for the isotope effect and the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing mechanism in the high-Tc cuprates in order to capture the features found in experiments. The goal of this work is to determine whether or not the ILPT model can account for the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7. Calculations are performed in the weak and strong coupling limits, and the efi"ects of both small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a follow up to the penetration depth calculations, both the neutron scattering intensity and the Knight shift are calculated within the ILPT formalism. The aim is to determine if the ILPT model can yield results consistent with experiments performed for these properties. The results for all three thermodynamic properties considered are not consistent with the notion that the interlayer pair tunneling must be the dominate pairing mechanism in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement with experiments is obtained for small strengths of pair tunneling, and that large pair tunneling yields results which do not resemble those of the experiments.
Resumo:
Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.
Resumo:
The purpose of this study was to determine the effect of increased soil moisture levels on
the decomposition processes in a peat-extracted bog. Field experiments, in which soil
moisture levels were manipulated, were conducted using 320 microcosms in the
Wainfleet Bog from May 2002 to November 2004. Decomposition was measured using
litter bags and monitoring the abundance of macro invertebrate decomposers known as
Collembola. Litter bags containing wooden toothpicks (n=2240), filter paper (n=480)
and Betula pendula leaves (n=40) were buried in the soil and removed at regular time
intervals up to one year. The results of the litter bag studies demonstrated a significant
reduction of the decomposition of toothpicks (p<0.001), filter paper (p<0.001), and
Betula pendula leaves (p