719 resultados para FERROMAGNETIC SUPERCONDUCTOR RUSR2GDCU2O8
Resumo:
We study the order parameter for mixed-symmetry states involving a major d(x2-y2) state and various minor s-wave states (s, s(xy), and Sx2+y2) for different filling and temperature for mixing angles 0 and pi /2. We employ a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice. There is mixing for the symmetric s state both on tetragonal and orthorhombic lattice. The s(xy) state mixes with the d(x2-y2) state only on orthorhombic lattice. The s(x2+y2) state never mixes with the d(x2-y2) state. The temperature dependence of the order parameters is also studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Large back-to-back correlations of observable fermion-anti-fermion pairs are predicted to appear, if the mass of the fermions is modified in a thermalized medium. The back-to-back correlations of protons and anti-protons are experimentally observable in ultra-relativistic heavy ion collisions, similarly to the Andreev reflection of elections off the boundary of a superconductor. While quantum statistics suppresses the probability of observing pairs of fermions with nearby momenta, the fermionic back-to-back correlations are positive and of similar strength to bosonic back-to-back correlations. (C) 2001 Elsevier B.V. B,V, All rights reserved.
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate the solution of the gap equation for mixed order parameter symmetry states as a function of filling using a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice, the principal (major) component of the order parameter is taken to be of the d(x2-y2) type, As suggested in several investigations the minor component of the order parameter is taken to be of the d(xy) type. Both the permissible mixing angles 0 and pi/2 between the two components are considered. As a function of filling pronounced maxima of d(x2-y2) order parameter is accompanied by minima of the d(xy) order parameter. At fixed filling. The temperature dependence of the two components of the order parameter is also studied in all cases. The variation of critical temperature T, with filling is also studied and T-c is found to increase with second-neighbor hopping. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A room temperature ferromagnetic phase is observed in samples of poly(3-hexylthiophene) partially doped with ClO (4) over bar. The magnetic behavior presents a strong dependence on the sample preparation conditions, in particular, a dependence with the final potential of the sample after reduction. The origin of the ferromagnetism is proposed to be associated with interactions between spin 1/2 polarons formed in the polymeric chain upon doping. The dependence of saturation and spontaneous magnetization as the function of the final potential after reduction shows a way to control the magnetic properties of this polymer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we investigate the dynamics of vortices in a square mesoscopic superconductor. As time evolves we show how the vortices are nucleated into the sample to form a multivortex, single vortex, and giant vortex states. We illustrate how the vortices move around at the transition fields before they accommodate into an equilibrium configuration. We also calculate the magnetization and the free energy as functions of the applied magnetic field for several values of temperature. In addition, we evaluate the upper critical field.
Resumo:
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni) = 0.2-0.5 in the nickel-based solid solution ErNixMn1-xO3, while it can be extended up to x(Co) = 0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1-xO3, a critical concentration x(crit)(Ni) = 1/3 separates two regimes: spin-canted AF interactions predominate at x < x(crit), while the ferromagnetic behavior is enhanced for x > x(crit). Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at T-c, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T-1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50 = Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report the effects of oxygen stoichiometry in the structure and magnetic response of spinel-type NiMn2O4-delta polycrystalline samples controlled by heat-treatments in different atmospheric conditions.The post-annealed samples were analyzed by Scanning Electron Microscopy associated to X-ray Energy Dispersion Spectrometry, X-ray Photoelectron Spectroscopy and AC/DC magnetic measurements.Results indicate that the oxygen stoichiometry highly influences the magnetic interactions between the ferromagnetic, and antiferromagnetic sublattices in these compounds due to the presence of manganese in three possible valence states. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider the extension of the Brandt theory of elasticity of the Abrikosov flux-line lattice for a uniaxial superconductor for the case of parallel flux lines. The results show that the effect of the anisotropy is to rescale the components of the wave vector k and the magnetic field and order-parameter wave vector cut off by a geometrical parameter previously introduced by Kogan.
Resumo:
Amorphous and crystalline thin films of Mn-doped(0.5%-10%) GaAs and crystalline thin films of Zn1-xCoxO(x = 3%-20%) were investigated by means of magnetic susceptibility and electron spin resonance (ESR). For the Mn-doped GaAs samples, our results show the absence of ferromagnetic ordering for the amorphous films in the 300 > T > 2 K temperature range, in contrast to the ferromagnetism found in crystalline films for T-C < 110 K. A single ESR line with a temperature independent g-value (g similar to 2) is observed for the amorphous films, and the behavior of this ESR linewidth depends on the level of crystallinity of the film. For the Mn-doped GaAs crystalline films, only a ferromagnetic mode is observed for T < TC when the film is ferromagnetic. Turning now the Zn1-xCoxO films, ferromagnetic loops were observed at room temperature for these films. The magnetization data show an increasing of the saturation magnetization M. as a function of x reaching a maximum value for x approximate to 10%. ESR experiments at T = 300 K in the same films show a strong anisotropic ferromagnetic mode (FMR) for x = 0.10.
Resumo:
Ferromagnetic behaviour at 300 K has been observed from SQUID experiments in ClO4- doped PMTh, the samples were prepared electrochemically at 25 degreesC in acetonitrile with 0.1M LiClO4 and then partially reduced. Atomic absorption analysis discards magnetic particles contamination. Hysteresis curves were observed for pressed pellets in ail range of temperatures (300K-2K). The remanence at 300 K and pressed at 250 bar was around 8.06x10(-4) emu/g with coercitivity of 130 Oe. The influence of water content in the solvent during the sample synthesis and the pressure is shown. We discuss a model that explains our data in terms of the anisotropic superexchange Dziatoshinski-Moriya interaction giving rise to weak ferromagnetism.