899 resultados para FEEDBACK-CONTROL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An implementable nonlinear control design approach is presented for a supersonic air-breathing ramjet engine. The primary objective is to ensure that the thrust generated by the engine tracks the commanded thrust without violating the operational constraints. An important constraint is to manage the shock wave location in the intake so that it neither gets detached nor gets too much inside the intake. Both the objectives are achieved by regulating the fuel flow to the combustion chamber and by varying the throat area of the nozzle simultaneously. The design approach accounts for the nonlinear cross-coupling effects and nullifies those. Also, an extended Kalman filter has been used to filter out the sensor and process noises as well as to make the states available for feedback. Furthermore, independent control design has been carried out for the actuators. To test the performance of the engine for a realistic flight trajectory, a representative trajectory is generated through a trajectory optimization process, which is augmented with a newly-developed finite-time state dependent Riccati equation technique for nullifying the perturbations online. Satisfactory overall performance has been obtained during both climb and cruise phases. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the problem of impact time control of an interceptor against a stationary target. A nonlinear guidance law is proposed with the interceptor heading angle variation as a function of the range to target. Closed-form expressions for the design parameters are derived for an exact analysis of the impact time. A feedback form of the guidance law is presented for addressing realistic implementation in the presence of autopilot lag. Using the closed-form expressions of the impact time, a cooperative guidance scheme is presented for simultaneous impact in a salvo attack. Extensive simulation studies are presented validating the analytic findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ICEM 2010

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a hungry fruit fly, locating and landing on a fermenting fruit where it can feed, find mates, and lay eggs, is an essential and difficult task requiring the integration of both olfactory and visual cues. Understanding how flies accomplish this will help provide a comprehensive ethological context for the expanding knowledge of their neural circuits involved in processing olfaction and vision, as well as inspire novel engineering solutions for control and estimation in computationally limited robotic applications. In this thesis, I use novel high throughput methods to develop a detailed overview of how flies track odor plumes, land, and regulate flight speed. Finally, I provide an example of how these insights can be applied to robotic applications to simplify complicated estimation problems. To localize an odor source, flies exhibit three iterative, reflex-driven behaviors. Upon encountering an attractive plume, flies increase their flight speed and turn upwind using visual cues. After losing the plume, flies begin zigzagging crosswind, again using visual cues to control their heading. After sensing an attractive odor, flies become more attracted to small visual features, which increases their chances of finding the plume source. Their changes in heading are largely controlled by open-loop maneuvers called saccades, which they direct towards and away from visual features. If a fly decides to land on an object, it begins to decelerate so as to maintain a stereotypical ratio of expansion to retinal size. Once they reach a stereotypical distance from the target, flies extend their legs in preparation for touchdown. Although it is unclear what cues they use to trigger this behavior, previous studies have indicated that it is likely under visual control. In Chapter 3, I use a nonlinear control theoretic analysis and robotic testbed to propose a novel and putative mechanism for how a fly might visually estimate distance by actively decelerating according to a visual control law. Throughout these behaviors, a common theme is the visual control of flight speed. Using genetic tools I show that the neuromodulator octopamine plays an important role in regulating flight speed, and propose a neural circuit for how this controller might be implemented in the flies brain. Two general biological and engineering principles are evident across my experiments: (1) complex behaviors, such as foraging, can emerge from the interactions of simple independent sensory-motor modules; (2) flies control their behavior in such a way that simplifies complex estimation problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.

Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.

Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.