940 resultados para Evolutionary optimization methods
Resumo:
The neutral hydrolysis reaction of post-consumer poly(ethylene terephthalate) in solid state was studied through the reaction of the polymer with water at the molar ratio 1:91 with autogenous pressure. Two sizes of post-consumer PET flakes and temperatures of 135 °C, 170°C and 205°C with pressures of 4.0 atm, 7.5 atm and 13.5 atm, respectively, were considered. With reaction time equal to 6h, the method reached 99% depolymerization at 205°C, 8.2% at 170 °C and 1.7% at 135°C. The reaction extension was measured by separating the terephthalic acid formed in the process and calculating by gravimetry how much material could still be reacted. Through the viscosimetry of diluted, solutions and the counting of carboxylic end groups in the remaining material from the gravimetric assay, it was possible to suggest that the reaction occurs randomly and in the whole volume of the polymeric particle and not solely on the surface. The terephthalic acid obtained and then purified was characterized by elemental analysis, magnetic nuclear resonance, size and panicle size distribution and spectrophotometry in the visible spectrum, and it was similar to the petrochemical equivalent, with purity recorded in carbon base equal to 99.9%.
Resumo:
To enhance the global search ability of Population Based Incremental Learning (PBIL) methods, It Is proposed that multiple probability vectors are to be Included on available PBIL algorithms. As a result, the strategy for updating those probability vectors and the negative learning and mutation operators are redefined as reported. Numerical examples are reported to demonstrate the pros and cons of the newly Implemented algorithm. ©2006 IEEE.
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
In this work it is proposed an optimized dynamic response of parallel operation of two single-phase inverters with no control communication. The optimization aims the tuning of the slopes of P-ω and Q-V curves so that the system is stable, damped and minimum settling time. The slopes are tuned using an algorithm based on evolutionary theory. Simulation and experimental results are presented to prove the feasibility of the proposed approach. © 2010 IEEE.
Resumo:
The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10-12 M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing. © 2013 American Chemical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.
Resumo:
Há muitos anos, técnicas de Computação Evolucionária vem sendo aplicadas com sucesso na solução dos mais variados tipos de problemas de otimização. Na constante procura pelo ótimo global e por uma melhor exploração da superfície de busca, as escolhas para ajustar estes métodos podem ser exponencialmente complexas e requerem uma grande quantidade de intervenção humana. Estes modelos tradicionais darwinianos apóiam-se fortemente em aleatoriedade e escolhas heurísticas que se mantém fixas durante toda a execução, sem que acompanhem a variabilidade dos indivíduos e as eventuais mudanças necessárias. Dadas estas questões, o trabalho introduz a combinação de aspectos da Teoria do Design Inteligente a uma abordagem hibrida de algoritmo evolucionário, através da implementação de um agente inteligente o qual, utilizando lógica fuzzy, monitora e controla dinamicamente a população e seis parâmetros definidos de uma dada execução, ajustando-os para cada situação encontrada durante a busca. Na avaliação das proposições foi construído um protótipo sobre a implementação de um algoritmo genético para o problema do caixeiro viajante simétrico aplicado ao cenário de distância por estradas entre as capitais brasileiras, o que permitiu realizar 580 testes, simulações e comparações entre diferentes configurações apresentadas e resultados de outras técnicas. A intervenção inteligente entrega resultados que, com sucesso em muitos aspectos, superam as implementações tradicionais e abrem um vasto espaço para novas pesquisas e estudos nos aqui chamados: “Algoritmos Evolucionários Híbridos Auto-Adaptáveis”, ou mesmo, “Algoritmos Evolucionários Não-Darwinianos”.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Evolutionary algorithms have been widely used for Artificial Neural Networks (ANN) training, being the idea to update the neurons' weights using social dynamics of living organisms in order to decrease the classification error. In this paper, we have introduced Social-Spider Optimization to improve the training phase of ANN with Multilayer perceptrons, and we validated the proposed approach in the context of Parkinson's Disease recognition. The experimental section has been carried out against with five other well-known meta-heuristics techniques, and it has shown SSO can be a suitable approach for ANN-MLP training step.