971 resultados para Energy Integration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to assess changes in total energy expenditure (TEE), body weight (BW) and body composition following a peripheral blood stem cell transplant and following participation in a 3-month duration, moderate-intensity, mixed-type exercise programme. The doubly labelled and singly labelled water methods were used to measure TEE and total body water (TBW). Body weight and TBW were then used to calculate percentage body fat (%BF), and fat and fat-free mass (FFM). TEE and body composition measures were assessed pretransplant (PI), immediately post-transplant (PII) and 3 months post-PII (PIII). Following PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). While there was no change in TEE between pre- and post-transplant, BW (P

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose : Myelomeningocele is a complex disease often complicated by obesity for reasons not well understood. The objectives of this study were to determine body composition and energy expenditure of children with MMC. Methods : Resting energy expenditure (REE), body composition and anthropometry were measured in 19 children with MMC (12 M, 7 F). Total energy expenditure (TEE) was estimated using a 3-day activity record. Energy intake (EI) was measured in seven children (5 M, 2 F) with MMC. Data were then compared with predicted values. Results : Mean REE ( n = 19) was 4680 ±1452 kJ/day (96.1 ±18.1% of predicted REE). The range was large (45.8-125.7% of predicted REE). TEE ( n = 7) was 4344 ±2376 kJ/day, hence only 73 34% of predicted TEE. EI ( n = 7) was 6560 ±1329 kJ/day, approximating a normal energy requirement. Overall, BCM was lower than expected values. Conclusions : REE in children with MMC is variable when compared to predicted values. TEE was found to be lower in children with MMC than predicted values and EI was similar to predicted values in this group of seven children. BCM is reduced in children with MMC when compared to expected values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A knowledge of energy expenditure in infancy is required for the estimation of recommended daily amounts of food energy, for designing artificial infant feeds, and as a reference standard for studies of energy metabolism in disease states. Objectives: The objectives of this study were to construct centile reference charts for total energy expenditure (TEE) in infants across the first year of life. Methods: Repeated measures of TEE using the doubly labeled water technique were made in 162 infants at 1.5, 3, 6, 9 and 12 months. In total, 322 TEE measurements were obtained. The LMS method with maximum penalized likelihood was used to construct the centile reference charts. Centiles were constructed for TEE expressed as MJ/day and also expressed relative to body weight (BW) and fat-free mass (FFM). Results: TEE increased with age and was 1.40,1.86, 2.64, 3.07 and 3.65 MJ/day at 1.5, 3, 6, 9 and 12 months, respectively. The standard deviations were 0.43, 0.47, 0.52, 0.66 and 0.88, respectively. TEE in MJ/kg increased from 0.29 to 0.36 and in MJ/day/kg FFM from 0.36 to 0.48. Conclusions: We have presented centile reference charts for TEE expressed as MJ/day and expressed relative to BW and FFM in infants across the first year of life. There was a wide variation or biological scatter in TEE values seen at all ages. We suggest that these centile charts may be used to assess and possibly quantify abnormal energy metabolism in disease states in infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluoropolymers are known as chemically inert materials with good high temperature resistance, so they are often the materials of choice for harsh chemical environments. These properties arise because the carbon-fluorine bond is the strongest of all bonds between other elements and carbon, and, because of their large size, fluorine atoms can protect the carbon backbone of polymers such as poly(tetrafluoroethylene), PTFE, from chemical attack. However, while the carbon-fluorine bond is much stronger than the carbon hydrogen bond, the G values for radical formation on high energy radiolysis of fluoropolymers are roughly comparable to those of their protonated counterparts. Thus, efficient high energy radiation grafting of fluoropolymers is practical, and this process can be used to modify either the surface or bulk properties of a fluoropolymer. Indeed, radiation grafted fluoropolymers are currently being used as separation membranes for fuel cells, hydrophilic filtration membranes and matrix substrate materials for use in combinatorial chemistry. Herein we present a review of recent studies of the high energy radiation grafting of fluoropolymers and of the analytical methods available to characterize the grafts. (C) 2003 Elsevier Ltd. All rights reserved.