961 resultados para Emerging Technologies Committee


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test the predictive ability of the transitory deviations of consumption from its common trend with aggregate wealth and labour income, cay, for both future equity and housing risk premia in emerging market economies. Using quarterly data for 31 markets, our country-level evidence shows that forecasting power of cay vis-à-vis stock returns is high for Brazil, China, Colombia, Israel, Korea, Latvia and Malaysia. As for housing returns, the empirical evidence suggests that financial and housing assets are perceived as complements in the case of Chile, Russia, South Africa and Thailand, and as substitutes in Argentina, Brazil, Hong Kong, Indonesia, Korea, Malaysia, Mexico and Taiwan. Using a panel econometric framework, we find that the cross-country heterogeneity observed in asset return predictability does not accrue to regional location, but can be attributed to differences in the degree of equity market development and in the level of income.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doctoral Programme in Telecommunication - MAP-tele

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado in Civil Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of chemicals and chemical derivatives in agriculture and industry has contributed to their accumulation and persistence in the environment. Persistent organic pollutants (POPs) are among the environmental pollutants of most concern since, when improperly handled and disposed, they can persist in the environment, bioaccumulate through the food web, and may create serious public health and environmental problems. Development of an effective degradation process has become an area of intense research. The physical/chemical methods employed, such as volatilization, evaporation, photooxidation, adsorption, or hydrolysis, are not always effective, are very expensive, and, sometimes, lead to generation/disposal of other contaminants. Biodegradation is one of the major mechanisms by which organic contaminants are transformed, immobilized, or mineralized in the environment. A clear understanding of the major processes that affect the interactions between organic contaminants, microorganisms, and environmental matrix is, thus, important for determining persistence of the compounds, for predicting in situ transformation rates, and for developing site remediation. Information on their risks and impact and occurrence in the different environmental matrices is also important, in order to attenuate their impact and apply the appropriate remediation process. This chapter provides information on the fate of pesticides and polycyclic aromatic hydrocarbons (PAHs), their impact, bioavailability, and biodegradation. © Springer Science+Business Media Dordrecht 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost half of Ireland’s commercial stocks face overexploitation. As traditional species decrease in abundance and become less profitable, the industry is increasingly turning to alternate species. Atlantic saury (Scomberesox saurus saurus (Walbaum)) has been identified as a potential species for exploitation. Very little information is available on its biology or population dynamics, especially for Irish waters. This thesis aims to obtain sound scientific data, which will help to ensure that a future Atlantic saury fishery can be sustainably managed. The research has produced valuable data, some of which contradicts previous studies. Growth of Atlantic saury measured using otolith microstructure is found to be more than twice that previously calculated from annual structures on scales and otoliths. This results in a significant reduction of the expected life span from five to about two years. Investigation of maturity stage at age indicates that Atlantic saury will reproduce for the first time at age one and will survive for one or at most two reproduction seasons. It is concluded that a future Irish fishery will target mostly fish prior to their first reproduction. Finally the thesis gives some insights into the population structure of Atlantic saury, by analysis of otolith morphometric. Significant differences are detected between Northeastern Atlantic and western Mediterranean Sea specimens of the 0+ age class (less than one year old). The implications of these results for the management of an emerging fishery are discussed.