998 resultados para Electronics cycle
Resumo:
A review of computational aeroacoustics (CCA) was made for application in electronics cooler noise. Computational aeroacoustics encompasses all numerical methods where the purposes is to predict the noise emissions from a simulated flow. Numerical simulation of the flow inside and around heat sinks and fans can lead to a prediction of the emitted noise while they are still in the design phase. Direct CCA is theoretically the best way to predict flow-based acoustic phenomena numerically. It is typically used only for low-frequency sound prediction. The boundary element method offers low computational cost and does not use a computational grid, but instead use vortex-surface calculations to determine tonal noise. Axial fans are commonly used to increase the airflow and thus the heat transfer over the heat sinks within the computer cases. Very detailed source simulations in the fan and heat sink region coupled with the use of analogy methods could result in excellent simulation results with a reasonable computational effort.
Resumo:
Large digital chips use a significant amount of energy to broadcast a low-skew, multigigahertz clock to millions of latches located throughout the chip. Every clock cycle, the large aggregate capacitance of the clock network is charged from the supply and then discharged to ground. Instead of wasting this stored energy, it is possible to recycle the energy by controlling its delivery to another part of the chip using an on-chip dc-dc converter. The clock driver and switching converter circuits share many compatible characteristics that allow them to be merged into a single design and fully integrated on-chip. Our buck converter prototype, manufactured in 90-nm CMOS, provides a proof-of-concept that clock network energy can be recycled to other parts of the chip, thus lowering overall energy consumption. It also confirms that monolithic multigigahertz switching converters utilizing zero-voltage switching can be implemented in deep-submicrometer CMOS. With multigigahertz operation, fully integrated inductors and capacitors use a small amount of chip area with low losses. Combining the clock driver with the power converter can share the large MOSFET drivers necessary as well as being energy and space efficient. We present an analysis of the losses which we confirm by experimentally comparing the merged circuit with a conventional clock driver. © 2012 IEEE.
Resumo:
In the past years, organic materials have been extensively investigated as an electronic material for organic field effect transistors (OFETs). In this paper, we briefly summarize the current status of organic field effect transistors including materials design, device physics, molecular electronics and the application of carbon nanotubes in molecular electronics. Future prospects and investigations required to improve the OFET performance are also involved.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Resumo:
Biofuels are increasingly promoted worldwide as a means for reducing greenhouse gas (GHG) emissions from transport. However, current regulatory frameworks and most academic life cycle analyses adopt a deterministic approach in determining the GHG intensities of biofuels and thus ignore the inherent risk associated with biofuel production. This study aims to develop a transparent stochastic method for evaluating UK biofuels that determines both the magnitude and uncertainty of GHG intensity on the basis of current industry practices. Using wheat ethanol as a case study, we show that the GHG intensity could span a range of 40-110 gCO2e MJ-1 when land use change (LUC) emissions and various sources of uncertainty are taken into account, as compared with a regulatory default value of 44 gCO2e MJ-1. This suggests that the current deterministic regulatory framework underestimates wheat ethanol GHG intensity and thus may not be effective in evaluating transport fuels. Uncertainties in determining the GHG intensity of UK wheat ethanol include limitations of available data at a localized scale, and significant scientific uncertainty of parameters such as soil N2O and LUC emissions. Biofuel polices should be robust enough to incorporate the currently irreducible uncertainties and flexible enough to be readily revised when better science is available. © 2013 IOP Publishing Ltd.
Resumo:
The potential for countries that currently have a nominal nuclear energy infrastructure to adopt thorium–uranium-fuelled nuclear energy systems, using a once-through ‘open’ nuclear fuel cycle, has been suggested by the International Atomic Energy Agency. This review paper highlights generation II, III and III+ nuclear energy technologies that could potentially adopt an open thorium–uranium fuel cycle and qualitatively highlights the main differences between the open thorium–uranium and open uranium fuel cycles.
Resumo:
Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.
Resumo:
Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
This study explores the basic possibility of achieving a self-sustainable Th-U233 fuel cycle that can be adopted in the current generation of Pressurized Water Reactors. This study outlines some fuel design strategies to achieve (or to approach as closely as possible) a sustainable fuel cycle. Major design tradeoffs in the core design are discussed. Preliminary neutronic analysis performed on the fuel assembly level with BOXER computer code suggests that net breeding of U233 is feasible in principle within a typical PWR operating envelope. However, some reduction in the core power density and/or shorter than typical fuel cycle length would most likely be required in order to achieve such performance.
Resumo:
The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.