893 resultados para Electrical impedance tomography, Calderon problem, factorization method
Resumo:
The buffer allocation problem (BAP) is a well-known difficult problem in the design of production lines. We present a stochastic algorithm for solving the BAP, based on the cross-entropy method, a new paradigm for stochastic optimization. The algorithm involves the following iterative steps: (a) the generation of buffer allocations according to a certain random mechanism, followed by (b) the modification of this mechanism on the basis of cross-entropy minimization. Through various numerical experiments we demonstrate the efficiency of the proposed algorithm and show that the method can quickly generate (near-)optimal buffer allocations for fairly large production lines.
Resumo:
A powerful decoupling method is introduced to obtain decoupled signal voltages from quadrature coils in magnetic resonance imaging (MRI). The new method uses the knowledge of the position of the signal source in MRI, the active slice, to define a new mutual impedance which accurately quantifies the coupling voltages and enables them to be removed almost completely. Results show that by using the new decoupling method, the percentage errors in the decoupled voltages are of the order of 10(-7)% and isolations between two coils are more than 170 dB.
Resumo:
Most magnetic resonance imaging (MRI) spatial encoding techniques employ low-frequency pulsed magnetic field gradients that undesirably induce multiexponentially decaying eddy currents in nearby conducting structures of the MRI system. The eddy currents degrade the switching performance of the gradient system, distort the MRI image, and introduce thermal loads in the cryostat vessel and superconducting MRI components. Heating of superconducting magnets due to induced eddy currents is particularly problematic as it offsets the superconducting operating point, which can cause a system quench. A numerical characterization of transient eddy current effects is vital for their compensation/control and further advancement of the MRI technology as a whole. However, transient eddy current calculations are particularly computationally intensive. In large-scale problems, such as gradient switching in MRI, conventional finite-element method (FEM)-based routines impose very large computational loads during generation/solving of the system equations. Therefore, other computational alternatives need to be explored. This paper outlines a three-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates for the modeling of low-frequency transient eddy currents in MRI, as an extension to the recently proposed time-harmonic scheme. The weakly coupled Maxwell's equations are adapted to the low-frequency regime by downscaling the speed of light constant, which permits the use of larger FDTD time steps while maintaining the validity of the Courant-Friedrich-Levy stability condition. The principal hypothesis of this work is that the modified FDTD routine can be employed to analyze pulsed-gradient-induced, transient eddy currents in superconducting MRI system models. The hypothesis is supported through a verification of the numerical scheme on a canonical problem and by analyzing undesired temporal eddy current effects such as the B-0-shift caused by actively shielded symmetric/asymmetric transverse x-gradient head and unshielded z-gradient whole-body coils operating in proximity to a superconducting MRI magnet.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional inverse Stefan problem for the heat equation by extending the MFS proposed in [5] for the one-dimensional direct Stefan problem. The sources are placed outside the space domain of interest and in the time interval (-T, T). Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the backward heat conduction problem (BHCP). We extend the MFS in Johansson and Lesnic (2008) [5] and Johansson et al. (in press) [6] proposed for one and two-dimensional direct heat conduction problems, respectively, with the sources placed outside the space domain of interest. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.
Resumo:
We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Resumo:
We present a novel numerical method for a mixed initial boundary value problem for the unsteady Stokes system in a planar doubly-connected domain. Using a Laguerre transformation the unsteady problem is reduced to a system of boundary value problems for the Stokes resolvent equations. Employing a modied potential approach we obtain a system of boundary integral equations with various singularities and we use a trigonometric quadrature method for their numerical solution. Numerical examples are presented showing that accurate approximations can be obtained with low computational cost.
Resumo:
An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.