954 resultados para Electric relays
Resumo:
The Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. In this study the effects of 213,561 electric vehicles on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is investigated. A model of Ireland’s electricity market in 2020 is developed using the power systems market model called PLEXOS for power systems. The amount of CO2 emissions associated with charging the EVs and the impacts with respect to Ireland’s target for renewable energy in transport is also quantified. A single generation portfolio and two different charging scenarios, arising from a peak and off-peak charging profile are considered. Results from the study confirm that offpeak charging is more beneficial than peak charging and that charging EVs will contribute 1.45% energy supply to the 10% renewable energy in transport target. The net CO2 reductions are 147 and 210 kt CO2 respectively.
Resumo:
We studied the process of lens regeneration in the rat following an extracapsular lens extraction preserving the anterior lens capsule and anterior lens epithelium. We assessed clinically the clarity of the newly regenerated lens, evaluated changes in the lens electrical currents following surgery and during the regeneration process and correlated these changes with findings on light microscopy. Protein analysis of the regenerated lens was also undertaken. Experiments were performed in 41 Sprague-Dawley rats, sacrificed at 0, 2, 4 and 8 weeks postoperatively. Our results showed that complete lens regeneration occurred 8 weeks postoperatively only if the anterior epithelium was preserved and the lens capsule was closed surgically. Lens electrical currents, altered following surgery, recovered in parallel with the process of regeneration of the lens. The newly regenerated lens was optically clear and biochemical analysis revealed a pattern of protein expression resembling that observed during lens development. In conclusion, complete lens regeneration occurs in the rat and it is possible that lens electrical signals, together with other cues, may play an important role in this process. © 2009 Elsevier Ltd.
Resumo:
Endogenous electric fields (EF) have long been known to influence cell behaviour during development, neural cell tropism, wound healing and cell behaviour generally. The effect is based on short circuiting of electrical potential differences across cell and tissue boundaries generated by ionic segregation. Recent in vitro and in vivo studies have shown that EF regulate not only cell movement but orientation of cells during mitosis, an effect which may underlie shaping of tissues and organs. The molecular basis of this effect is founded on receptor-mediated cell signalling events and alterations in cytoskeletal function as revealed in studies of gene deficient cells. Remarkably, not all cells respond directionally to EF in the same way and this has consequences, for instance, for lens development and vascular remodelling. The physical basis of EF effect may be related to changes induced in 'bound water' at the cell surface, whose organisation in association with trans-membrane proteins (e.g. receptors) is disrupted when EF are generated. Copyright © 2007 S. Karger AG.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.
Resumo:
A micro-grid is an autonomous system which can be operated and connected to an external system or isolated with the help of energy storage systems (ESSs). While the daily output of distributed generators (DGs) strongly depends on the temporal distribution of natural resources such as wind and solar, unregulated electric vehicle (EV) charging demand will deteriorate the imbalance between the daily load and generation curves. In this paper, a statistical model is presented to describe daily EV charging/discharging behaviour. An optimisation problem is proposed to obtain economic operation for the micro-grid based on this model. In day-ahead scheduling, with estimated information of power generation and load demand, optimal charging/discharging of EVs during 24 hours is obtained. A series of numerical optimization solutions in different scenarios is achieved by serial quadratic programming. The results show that optimal charging/discharging of EVs, a daily load curve can better track the generation curve and the network loss and required ESS capacity are both decreased. The paper also demonstrates cost benefits for EVs and operators.
Resumo:
A continuous cell-line has been shown to be adaptable to preparation of supernatants containing lymphokine activities. Separation and partial purification of migration inhibiting, colony stimulating and interferon activities from such preparations has been achieved by the use of density gradient iso-electric focusing.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.