879 resultados para Edible Coating
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
We present the possibility of a low work-function material, calcium aluminate electride, being used for a coating on a bare electrodynamic tether system. Analyses suggest that the coating would eliminate the need for an active cathodic device like a hollow cathode and, consequently, eliminate the need for an expellant to the hollow cathode, thus resulting in an electrodynamic tether system that requires no consumables. Applications include on-orbit power generation and deorbiting debris from low Earth orbit in a simple and trouble-free manner.
Resumo:
During fertilization in marine invertebrates, fusion between sperm and egg cell membranes occurs at the tip of the sperm acrosomal process. In abalone sperm the acrosomal process is coated with an 18-kDa protein. In situ, this protein has no effect on the egg vitelline envelope, but in vitro it is a potent fusagen of liposomes. Thus, the 18-kDa protein may mediate membrane fusion between the gametes, a step in gamete recognition known to restrict heterospecific fertilization in other species. The cDNA and deduced amino acid sequences of the 18-kDa protein were determined for five species of California abalone. The deduced amino acid sequences exhibit extraordinary divergence; the percent identity varies from 27% to 87%. Analysis of nucleotide substitution shows extremely high frequencies of amino acid-altering substitution compared to silent substitution, demonstrating that positive Darwinian selection promotes the divergence of this protein. However, amino acid replacement is conservative with respect to size and polarity of residue. The data support the developing idea that in free-spawning marine invertebrates, the proteins mediating fertilization may be subjected to intense, and as yet unknown, selective forces. The extraordinary divergence of fertilization proteins may be related to the establishment of barriers to heterospecific fertilization.
Resumo:
O objetivo deste trabalho foi avaliar o potencial de uso do resíduo da extração de pigmento de cúrcuma na produção de filmes e coberturas. Para o estudo dos filmes, foram utilizados glicerol e sorbitol como plastificantes e avaliados os efeitos da concentração de farinha de cúrcuma e do plastificante sobre as propriedades mecânicas, solubilidade, permeabilidade ao vapor de água (PVA), molhabilidade, atividade antioxidante, teor de curcuminóides e teor de compostos fenólicos totais utilizando um Delineamento Central Composto Rotacional 22, e os resultados foram avaliados utilizando a metodologia de superfície de resposta (MSR). A concentração de farinha afetou de forma positiva a espessura, PVA e o teor de curcuminóides totais dos filmes plastificados com glicerol e sorbitol. Entretanto, esta variável afetou as propriedades de solubilidade, molhabilidade e teor de compostos fenólicos totais somente dos filmes com glicerol. A concentração de plastificante (glicerol ou sorbitol) afetou significativamente a solubilidade, PVA e molhabilidade de ambos os filmes. Filmes de farinha de cúrcuma com boas propriedades mecânicas, baixa permeabilidade ao vapor de água, alta atividade antioxidante, alto teor de curcuminóides e alto teor de compostos fenólicos totais podem ser produzidos utilizando 27,9 a 30 g glicerol/100 g farinha ou 30 a 42 g sorbitol/100 g farinha e concentração de farinha na faixa de 5% a 6,41%. A cobertura de farinha de cúrcuma contendo 6% de farinha e 30 g glicerol/100 g de farinha foi aplicada em bananas Maçã (Musa acuminata) armazenadas a 27ºC e 65% UR. Assim, foi avaliado o efeito da cobertura na qualidade pós-colheita das bananas em função à suas características físico-químicas como perda de massa, firmeza da polpa, pH, acidez titulável, sólidos solúveis, açúcares redutores e cor da casca. Os resultados mostraram que a cobertura foi eficiente em diminuir a perda de massa, o teor de açúcares redutores, a acidez, a perda da firmeza e a cor da casca principalmente durante a etapa de maturação do fruto. Entretanto, não foi observado grande efeito da cobertura sobre o pH e o teor de sólidos solúveis durante o período estudado. As bananas sem a cobertura tiveram vida útil de 6 dias, enquanto as bananas com cobertura tiveram vida útil de 9 dias.
Resumo:
Edible active films based on sodium caseinate (SC) and calcium caseinate (CC) plasticized with glycerol (G) at three different concentrations and carvacrol (CRV) as active agent were prepared by solvent casting. Transparent films were obtained and their surfaces were analysed by optical microscopy and scanning electron microscopy (SEM). The influence of the addition of three different plasticizer concentrations was studied by determining tensile properties, while Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to evaluate the structural and thermal behavior of such films. The addition of glycerol resulted in a reduction in the elastic modulus and tensile strength, while some increase in the elongation at break was observed. In general terms, SC films showed flexibility higher than the corresponding CC counterparts. In addition, the presence of carvacrol caused further improvements in ductile properties suggesting the presence of stronger interactions between the protein matrix and glycerol, as it was also observed in thermal degradation studies. FTIR spectra of all films showed the characteristic bands and peaks corresponding to proteins as well as to primary and secondary alcohols. In summary, the best results regarding mechanical and structural properties for caseinates-based films containing carvacrol were found for the formulations with high glycerol concentrations.
Resumo:
The most fashionable trends in food packaging research are targeted towards improvements in food quality and safety by increasing the use of environmentally-friendly materials, ideally those able to be obtained from bio-based resources and presenting biodegradable characteristics. Edible films represent a key area of development in new multifunctional materials by their character and properties to effectively protect food with no waste production. The use of edible films should be considered as a clean and elegant solution to problems related with waste disposal in packaging materials. In particular, pectin has been reported as one of the main raw materials to obtain edible films by its natural abundance, low cost and renewable character. The latest innovations in food packaging by the use of pectin-based edible films are reviewed in this paper, with special focus on the use of pectin as base material for edible coatings. The structure, properties related to the intended use in food packaging and main applications of pectins are herein reported.
Resumo:
Active edible films represent one of the current and future trends in the development of new polymers for selected applications, particularly food packaging. Some biopolymers show excellent performance as carriers for active compounds extracted from natural sources and are able to be released at a controlled rate to packaged food. In this review we aim to present, in a comprehensive way, the most recent advances and updates in this subject, where much research is currently ongoing and new studies are reported very often. This review focuses on innovative biopolymer matrices, their processing to obtain edible active films, and present and future applications.
Resumo:
A chemical sensor based on a coated long-period grating has been prepared and characterized. Designer coatings based on polydimethylsiloxane were prepared by the incorporation of diphenylsiloxane and titanium cross-linker in order to provide enhanced sensitivity for a variety of key environmental pollutants and optimal refractive index of the coating. Upon microextraction of the analyte into the polymer matrix, an increase in the refractive index of the coating resulted in a change in the attenuation spectrum of the long-period grating. The grating was interrogated using ring-down detection as a means to amplify the optical loss and to gain stability against misalignment and power fluctuations. Chemical differentiation of cyclohexane and xylene was achieved and a detection limit of 300 ppm of xylene vapour was realized.