1000 resultados para Eastern Basin


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main stages of the sedimentary cycle of uranium in modern marine basins are under consideration in the book. Annually about 18 thousand tons of dissolved and suspended uranium enters the ocean with river runoff. Depending on a type of a marine basin uranium accumulated either in sediments of deep-sea basins, or in sediments of continental shelves and slopes. In the surface layer of marine sediments hydrogenic uranium is predominantly bound with organic matter, and in ocean sediments also with iron, manganese and phosphorus. In diagenetic processes there occurs partial redistribution of uranium in sediments, as well as its concentration in iron-manganese, phosphate and carbonate nodules and biogenic phosphate detritus. Concentration of uranium in marine sediments of various types depending on their composition, as well as on forms of its entering, degree of differentiation and of sedimentation rates, on hydrochemical regime and water circulation, and on intensity of diagenetic processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Products of two mud volcanoes from the distal part of the Mediterranean Ridge accretionary complex have been investigated regarding their B, C, and O stable isotope signatures. The mud breccias have been divided into mud matrix, lithified clasts, biogenic deposits, and authigenic cements and crusts related to fluid flow and cementation. Isotope geochemistry is used to evaluate the depth of mobilization of each phase in the subduction zone. B contents and isotope ratios of the mud and mud clasts show a general trend of B enrichment and decreasing d11B values with increasing consolidation (i.e., depth). However, the majority of the clast and matrix samples relate to moderate depths of mobilization within the wedge (1-2 km below seafloor). The carbonate cements of most of these clasts as well as the authigenic crusts, however, provide evidence for a deep fluid influence, probably associated with the décollement at 5-6 km depth. This interpretation is supported by d13C ratios of the crust, which indicate precipitation of C from thermogenic methane, and by the d11B ratios of pore-water samples of mud-breccia drill cores. Clams (Vesicomya sp.) living adjacent to fluid vents have d11B and d18O values corresponding to brines known in the area, which acted as the parent solution for shell precipitation. Such brines are most likely Miocene pore waters trapped at deep levels within the backstop to the accretionary prism, probably prior to desiccation of the Mediterranean in the Messinian (6-5 Ma). Combining all results, deep fluid circulation and expulsion are identified as the main processes triggering mud liquefaction and extrusion, whereas brines contribute only locally. Given the high B contents, mud extrusion has to be considered a major backflux mechanism of B into the hydrosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The origins of sapropels (sedimentary layers rich in organic carbon) are unclear, yet they may be a key to understanding the influence of climate on ocean eutrophication, the mechanisms of sustaining biological production in stratified waters and the genesis of petroleum source rocks (Rohling, 1994, doi:10.1016/0025-3227(94)90202-X; Castradori, 1993, doi:10.1029/93PA00756; Calvert et al., 1992, doi:10.1038/359223a0). Recent microfossil studies of foraminifera (Rohling, 1994, doi:10.1016/0025-3227(94)90202-X) and calcareous nannofossils (Castradori, 1993, doi:10.1029/93PA00756) have focused attention on a deep chlorophyll maximum as a locus for the high production inferred (Calvert et al., 1992, doi:10.1038/359223a0) for sapropel formation, but have not identified the agent responsible. Here we report the results of a high-resolution, electron-microscope-based study of a late Quaternary laminated sapropel in which the annual flux cycle has been preserved. We find that much of the production was by diatoms, both mat-forming and other colonial forms, adapted to exploit a deep nutrient supply trapped below surface waters in a stratified water column. Reconstructed organic-carbon and opal fluxes to the sediments are comparable to those at high-productivity sites in today's oceans, and calculations based on diatom Si/C ratios suggest that the high organic-carbon content of sapropels may be entirely accounted for by sedimenting diatoms. We propose that this style of production may have been common in ancient Palaeogene and Cretaceous seas, environments for which conventional appeals to upwelling-driven production to account for the occurrence of diatomites, and some organic-carbon-rich sediments, have never seemed wholly appropriate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mud volcanism on the Mediterranean Ridge is caused by extrusion of overpressured sediments, with consequent formation of spectacular dome-shaped features composed of mud breccias at the seafloor. The organic material in the mud breccia of the Napoli mud volcano is a mixture of different facies, stratigraphic origin and thermal maturities. One portion is synsedimentary organic material with only minor diagenetic alterations and represents sedimenting material that was embedded into the mud volcano during its extrusion. The mud breccia also contains thermally mature organic material of mainly terrestrial provenance with algae of fresh- and brackish-water origin. Vitrinite reflectance data of this maturity generation range from 0.65 to 0.90% R(oil) and thus characterize thermally mature source rocks, a rank which is corroborated by fluorescence and molecular characteristics. The predominance of vitrinite in the maceral assemblages and the occurrence of biomarkers of terrigenous origin suggest that the major part of the mud matrix derives from a lacustrine or riverine sedimentary unit in the subsurface, possibly from the Messinian stage. A third generation of organic material includes inertinites and vitrinites of high reflectance, which represent recycled organic matter present in any marine sediment. By use of the Lopatin method for modelling the thermal maturation of hydrocarbon source rocks from the vitrinite reflectance data, we calculated that the depth of mobilization ranges from 4900 m to 7500 m, depending upon the temperature gradient used.