987 resultados para ETHYLENE POLYMERIZATION CATALYSTS
Resumo:
Based on in-situ Mossbauer and X-ray diffraction studies, it is shown that in the Fe/TiO2 catalyst, the anatase-rutile transformation of the TiO2 support is facilitated by the Fe2+ ions formed during the reduction. The transformation occurs at lower temperatures in Th/TiO2 and Cu/TiO2 compared to pure TiO2. In general, the transformation of anatase to rutile seems to occur at or below the temperature (approximately 770 K) at which strong-metal-support-interaction manifests itself.
Resumo:
In situ EXAFS investigations have been carried out on Ni/γ-Al2O3 and Cu---Ni/γ-Al2O3 catalysts with different metal loadings, and prepared by different procedures. As-prepared Ni/γ-Al2O3 on calcination gives NiO and NiAl2O4-like phases on the surface, the proportion of the latter increasing with the increase in calcination temperature; the proportion of the NiO-like phase, on the other hand, increases with the metal loading. The reducibility of Ni/γ-Al2O3 to give metallic Ni on the surface directly depends on the proportion of the NiO-like phase present before reduction. Co-impregnating with Cu suppresses the formation of the surface aluminate and thereby favours the reduction to metallic Ni. This conclusion is clearly substantiated by our studies of bimetallic catalysts containing varying Cu/Ni ratios and also those prepared by the two-stage impregnation procedure.
Resumo:
Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2
Resumo:
In situ EXAFS and X-ray diffraction investigations of Ni/TiO2 catalysts show that NiTiO3 is formed as an intermediate during calcination of catalyst precursors prepared by the wet-impregnation method; the intermediate is not formed when ion-exchange method is used for the preparation. On hydrogen reduction, NiTiO3 gives rise to Ni particles dispersed in the TiO2(rutile) matrix. The occurrence of the anatase-rutile transformation of the TiO2 support, the formation and subsequent decomposition/reduction of NiTiO3 as well as the unique interface properties of the Ni particles are all factors of importance in giving rise to metal-support interaction. Active TiO2(anatase) prepared from gel route gives an additional species involving Ni3+.
Resumo:
Electrooxidation of methanol in sulphuric acid on carbon-supported electrodes containing Pt-Sn bimetal catalysts prepared by an in-situ route is reported, The catalysts have been characterized employing chemical analyses, XRD, and XANES data in conjunction with electrochemistry. This study suggests that the Sn content in Pt-Sn bimetals produces: (i) a charge transfer from Sn to Pt and (ii) an increase in the coverage of adsorbed methanolic residues with the Sn content. From the electrode-kinetics data, it is inferred that while the electrodes of (3:3) Pt-Sn/C catalyst involve a 2-electron rate-limiting step akin to Pt/C electrodes, it is shifted to only 1-electron on (3:2) Pt-Sn/C, (3:3) Pt-Sn/C, and (3:4) Pt-Sn/C electrodes.
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
A cross-linked polymer-gel soft matter electrolyte with superior electrochemical, thermal and mechanical properties obtained from free radical polymerization of vinyl monomers in a semi-solid organic nonionic plastic crystalline electrolyte for application in rechargeable lithium-ion batteries is discussed here.
Resumo:
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
The temperature programmed-desorption (TPD) of butane, butene, butadiene and thiophene over a series of Co-MO/gamma-Al2O3 catalysts with varying Co to Mo ratio has been investigated. The TPD of butane, butene and butadiene over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site without significantly affecting desorption from the original site. The TPD of thiophene over a series of catalysts with varying Co content showed identical desorption temperature as well as heat of desorption. It was concluded that thiophene was adsorbed on the ''Mo-S'' component of the catalyst and was unaffected by the presence of Co.
Resumo:
Direct use of experimental eigenvalues of the vibrational secular equation on to the ab initio predicted eigenvector space is suggested as a means of obtaining a reliable set of intramolecular force constants. This method which we have termed RECOVES (recovery in the eigenvector space) is computationally simple and free from arbitrariness. The RECOVES force constants, by definition, reproduce the experimental vibrational frequencies of the parent molecule exactly. The ab initio calculations were carried out for ethylene as a test molecule and the force constants obtained by the present procedure also correctly predict the vibrational frequencies of the deuterated species. The RECOVES force constants for ethylene are compared with those obtained by using the SQM procedure.
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
In-situ EXAFS investigations have been carried out on Ni/gamma-Al2O3 catalysts with different metal loadings and prepared from different precursors. When the calcined precursors are reduced in hydrogen, the proportion of nickel metal formed varies with the nature of the precursor employed; NiAl2O4 is the unreduced product. The metal loading does not have any significant effect on the proportion of metal formed except in the case of the catalyst prepared by wet-impregnation, where appreciable metal is obtained only when the loading is greater than 10wt%. Ni/AlPO4 catalysts do not show the formation of NiAl2O4 and reduction to metal is complate, unlike with the Ni/gamma-Al2O3 catalysts which show only partial reduction to metal.