932 resultados para ENERGY BUDGET MODEL
Resumo:
Non peer reviewed
Resumo:
We study work extraction from the Dicke model achieved using simple unitary cyclic transformations keeping into account both a non optimal unitary protocol, and the energetic cost of creating the initial state. By analyzing the role of entanglement, we find that highly entangled states can be inefficient for energy storage when considering the energetic cost of creating the state. Such surprising result holds notwithstanding the fact that the criticality of the model at hand can sensibly improve the extraction of work. While showing the advantages of using a many-body system for work extraction, our results demonstrate that entanglement is not necessarily advantageous for energy storage purposes, when non optimal processes are considered. Our work shows the importance of better understanding the complex interconnections between non-equilibrium thermodynamics of quantum systems and correlations among their subparts.
Resumo:
According to law number 12.715/2012, Brazilian government instituted guidelines for a program named Inovar-Auto. In this context, energy efficiency is a survival requirement for Brazilian automotive industry from September 2016. As proposed by law, energy efficiency is not going to be calculated by models only. It is going to be calculated by the whole universe of new vehicles registered. In this scenario, the composition of vehicles sold in market will be a key factor on profits of each automaker. Energy efficiency and its consequences should be taken into consideration in all of its aspects. In this scenario, emerges the following question: which is the efficiency curve of one automaker for long term, allowing them to adequate to rules, keep balancing on investment in technologies, increasing energy efficiency without affecting competitiveness of product lineup? Among several variables to be considered, one can highlight the analysis of manufacturing costs, customer value perception and market share, which characterizes this problem as a multi-criteria decision-making. To tackle the energy efficiency problem required by legislation, this paper proposes a framework of multi-criteria decision-making. The proposed framework combines Delphi group and Analytic Hierarchy Process to identify suitable alternatives for automakers to incorporate in main Brazilian vehicle segments. A forecast model based on artificial neural networks was used to estimate vehicle sales demand to validate expected results. This approach is demonstrated with a real case study using public vehicles sales data of Brazilian automakers and public energy efficiency data.
Resumo:
The share of variable renewable energy in electricity generation has seen exponential growth during the recent decades, and due to the heightened pursuit of environmental targets, the trend is to continue with increased pace. The two most important resources, wind and insolation both bear the burden of intermittency, creating a need for regulation and posing a threat to grid stability. One possibility to deal with the imbalance between demand and generation is to store electricity temporarily, which was addressed in this thesis by implementing a dynamic model of adiabatic compressed air energy storage (CAES) with Apros dynamic simulation software. Based on literature review, the existing models due to their simplifications were found insufficient for studying transient situations, and despite of its importance, the investigation of part load operation has not yet been possible with satisfactory precision. As a key result of the thesis, the cycle efficiency at design point was simulated to be 58.7%, which correlated well with literature information, and was validated through analytical calculations. The performance at part load was validated against models shown in literature, showing good correlation. By introducing wind resource and electricity demand data to the model, grid operation of CAES was studied. In order to enable the dynamic operation, start-up and shutdown sequences were approximated in dynamic environment, as far as is known, the first time, and a user component for compressor variable guide vanes (VGV) was implemented. Even in the current state, the modularly designed model offers a framework for numerous studies. The validity of the model is limited by the accuracy of VGV correlations at part load, and in addition the implementation of heat losses to the thermal energy storage is necessary to enable longer simulations. More extended use of forecasts is one of the important targets of development, if the system operation is to be optimised in future.
Resumo:
Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.
Resumo:
The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.
Resumo:
There is increasing agreement that understanding complexity is important for project management because of difficulties associated with decision-making and goal attainment which appear to stem from complexity. However the current operational definitions of complex projects, based upon size and budget, have been challenged and questions have been raised about how complexity can be measured in a robust manner that takes account of structural, dynamic and interaction elements. Thematic analysis of data from 25 in-depth interviews of project managers involved with complex projects, together with an exploration of the literature reveals a wide range of factors that may contribute to project complexity. We argue that these factors contributing to project complexity may define in terms of dimensions, or source characteristics, which are in turn subject to a range of severity factors. In addition to investigating definitions and models of complexity from the literature and in the field, this study also explores the problematic issues of ‘measuring’ or assessing complexity. A research agenda is proposed to further the investigation of phenomena reported in this initial study.
Resumo:
In this article we introduce the term “energy polarization” to explain the politics of energy market reform in the Russian Duma. Our model tests the impact of regional energy production, party cohesion and ideology, and electoral mandate on the energy policy decisions of the Duma deputies (oil, gas, and electricity bills and resolution proposals) between 1994 and 2003. We find a strong divide between Single-Member District (SMD) and Proportional Representation (PR) deputies High statistical significance of gas production is demonstrated throughout the three Duma terms and shows Gazprom's key position in the post-Soviet Russian economy. Oil production is variably significant in the two first Dumas, when the main legislative debates on oil privatization occur. There is no constant left–right continuum, which is consistent with the deputies' proclaimed party ideology. The pro- and anti-reform poles observed in our Poole-based single dimensional scale are not necessarily connected with liberal and state-oriented regulatory policies, respectively. Party switching is a solid indicator of Russia's polarized legislative dynamics when it comes to energy sector reform.
Resumo:
With increasing pressure to provide environmentally responsible infrastructure products and services, stakeholders are putting significant foci on the early identification of financial viability and outcome of infrastructure projects. Traditionally, there has been an imbalance between sustainable measures and project budget. On one hand, the industry tends to employ the first-cost mentality and approach to developing infrastructure projects. On the other, environmental experts and technology innovators often push for the ultimately green products and systems without much of a concern for cost. This situation is being quickly changed as the industry is under pressure to continue to return profit, while better adapting to current and emerging global issues of sustainability. For the infrastructure sector to contribute to sustainable development, it will need to increase value and efficiency. Thus, there is a great need for tools that will enable decision makers evaluate competing initiatives and identify the most sustainable approaches to procuring infrastructure projects. In order to ensure that these objectives are achieved, the concept of life-cycle costing analysis (LCCA) will play significant roles in the economics of an infrastructure project. Recently, a few research initiatives have applied the LCCA models for road infrastructure that focused on the traditional economics of a project. There is little coverage of life-cycle costing as a method to evaluate the criteria and assess the economic implications of pursuing sustainability in road infrastructure projects. To rectify this problem, this paper reviews the theoretical basis of previous LCCA models before discussing their inability to determinate the sustainability indicators in road infrastructure project. It then introduces an on-going research aimed at developing a new model to integrate the various new cost elements based on the sustainability indicators with the traditional and proven LCCA approach. It is expected that the research will generate a working model for sustainability based life-cycle cost analysis.
Resumo:
This paper will explore how a general education can contribute successfully to vocational outcomes using both Participatory Action Research (PAR) and Program Theory methodology. The paper will focus on the development aspects of ‘marrying’ vocational and general education including engagement processes, student, teacher, institute and employer preparation and the pathway possibilities that emerge. Successful cases presented include the: Healthy Futures program (pathways into the Health and Allied industries); Accounting Pathways program (simultaneously studying a general Accounting subject and a Certificate III vocational qualification); and Sustainable Sciences initiative (development of a vocational qualification that focuses on the emerging renewable energy industry and is linked to school science programs). The case studies have been selected because they are unique in character and application and can be used as a basis for future program development in other settings or curriculum areas.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.
Resumo:
This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.
Resumo:
Design teams are confronted with the quandary of choosing apposite building control systems to suit the needs of particular intelligent building projects, due to the availability of innumerable ‘intelligent’ building products and a dearth of inclusive evaluation tools. This paper is organised to develop a model for facilitating the selection evaluation for intelligent HVAC control systems for commercial intelligent buildings. To achieve these objectives, systematic research activities have been conducted to first develop, test and refine the general conceptual model using consecutive surveys; then, to convert the developed conceptual framework into a practical model; and, finally, to evaluate the effectiveness of the model by means of expert validation. The results of the surveys are that ‘total energy use’ is perceived as the top selection criterion, followed by the‘system reliability and stability’, ‘operating and maintenance costs’, and ‘control of indoor humidity and temperature’. This research not only presents a systematic and structured approach to evaluate candidate intelligent HVAC control system against the critical selection criteria (CSC), but it also suggests a benchmark for the selection of one control system candidate against another.