993 resultados para Dry matter accumulation rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physic nut (Jatropha curcas L.) is a perennial oilseed species that has aroused economic interest for biodiesel production. Among other factors, it is essential to determine the nutritional demands of this species to facilitate raising it as a crop. This study aimed to evaluate the early growth and mineral nutrition of physic nut, as well as soil fertility, as affected by phosphorus fertilization. The study was carried out in a plastic greenhouse in a completely randomized block experimental design with four replicates. The plants were grown in plastic pots filled with 50 dm³ of Latossolo Vermelho (Rhodic Hapludox). Application rates of 0, 50, 100, 150 and 200 mg dm-3 of P were tested, plus a control. Evaluations of plant height and root collar diameter were performed monthly. The experiment was ended 150 days after transplant of the seedlings, at which time leaf area, dry weight, leaf contents and total accumulation of macro- (N, P, K, Ca, Mg and S) and micronutrients (B, Cu, Fe, Mn and Zn) were performed, and soil chemical properties were analyzed. We concluded that absence of P fertilization alone is as limiting to early growth of physic nut as simultaneous absence of soil amendment and fertilization. The rate of 57 mg dm-3 of P may be recommended for initial growth of physic nut. The total accumulation of nutrients in physic nut seedlings exhibited the following order: K>N>Mg>Ca>P>S>Fe>Mn>B>Zn>Cu. Phosphorus fertilization resulted in increased soil cation exchange capacity (CEC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the production of dry mass, forage accumulation rate and the structural composition of Brachiaria brizantha cv. Xaraes pastures, managed under different grazing heights in continuous stocking. The experimental area was 12 hectares, divided in paddocks of one hectare each. The treatments were 15, 30, 45 and 60 cm of defoliation heights. Nellore steers were used to reach the desired heights. Every 28 days four cut samples and eight visual samples were collected for comparative performance in the experimental plots. Two grazing exclusion cages were used per treatment to estimate accumulation rates kg.ha(-1) DM. The cut material was taken to the laboratory for separation of the botanical components (green leaf, stem and senescent material), weighing and determination of dry matter. The experimental design was the completely randomized with three replicates. There were treatments effects at all seasons for the production of total mass, except in the spring. In summer and spring seasons it was observed the highest values for leaf blades (1.100 kg DM.ha(-1)). In the winter, the highest values of senescent material was observed, as expected. The average accumulation showed no significant difference among the treatments, except for stem and total mass in the summer and stem in the fall. The tillers were heavier and higher values for number of green leaves per tiller occurred in the fall, but for senescent leaves per tiller ocurred in the winter. Swards grazed at heights between 45 and 60 cm of defoliation, had good production of forage mass and leaf constituent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field trial was conducted designed in a completely randomized block in a 4 x 3 factorial arrangement to evaluate the application of nitrogen doses (N) (0, 40, 80 and 160 kg/ha) on the morphogenical characteristics and dry matter partition of three forage grasses (Panicum maximum cvs. Mombasa and Tanzania and Brachiaria sp. Hybrid Mulato). The leaf appearance (LAR, leaf/day) and stretching (LER; mm/day) rates, the number of green leaves per tiller (NLT) and the average weight of tillers (MTW; g) presented s positive linear response to the N dose while the phyllochron (Phil; day/leaves) showed a negative linear response. The highest LER, IAL and final leaf length (FLL; cm) occurred in the Mombaca and Tanzania grasses, while the highest LAR occurred in the Mulato grass. There was a negative quadratic effect of the N dose on the stem elongation rate (SER; mm/day) and LF. The Mombaca and Tanzania grasses presented the highest SER; however, in just two forages. The production of total dry matter (TDM; kg/ha), leaves (LDM; kg/ha) and stems (SDM; kg/ha) increased linearly and quadratically with the N dose, respectively, for the Mombaca and Tanzania grasses. There was a high positive correlation among DM, LDM and SDM and the Mombaca grass MTW. The dry matter production and morphogenic characteristics were influenced by the nitrogen fertilization as a result of the substantial increase in the flow of tissues stimulated by fertilization, proving the importance of N for forage biomass accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient accumulation curves help us understand the nutritional demands of a crop. The aim of this study was to evaluate the growth and accumulation of macronutrients by the sweet sorghum cultivars CVSW80007, CVSW80147, CVSW82028, CVSW82158. The experiment was conducted in a renewal sugarcane ratoon area at Uchoa county, SP, being deployed in January 2012. The plants were collected in 15 days intervals from the 10th after emergence (DAE). The greatest content of dry matter, N, P, Mg and S, was due to by the CVSW82028 cultivar, while the CVSW82158 extract the greatest amount of K and the CVSW80147 of Ca. The stalks represented the highs percentage of dry matter and nutrient content, except nitrogen and phosphorus, in which grains corresponded to the higher percentage of total absorption. The CVSW80007, CVSW82028 and CVSW82158 cultivars showed the following decreasing nutrient extraction N>K>Ca>Mg>P>S and the CVSW80147, K>N>Ca>Mg>P>S. Considering only the stalks harvest, the decreasing nutrient exportation is the same for all cultivars: K>N>Ca>Mg>S>P. Whereas the decreasing nutrient exportation sequence considering stalks and grain harvest is the following for the CVSW80007, CVSW80147 and CVSW82158 cultivars: K>N>Ca>Mg>P>S and K>N>Ca>Mg>P>S for the CVSW82028.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a global and increasingly competitive fresh produce market, more attention is being given to fruit quality traits and consumer satisfaction. Kiwifruit occupies a niche position in the worldwide market, when compared to apples, oranges or bananas. It is a fruit with extraordinarily good nutritional traits, and its benefits to human health have been widely described. Until recently, international trade in kiwifruit was restricted to a single cultivar, but different types of kiwifruit are now becoming available in the market. Effective programmes of kiwifruit improvement start by considering the requirements of consumers, and recent surveys indicate that sweeter fruit with better flavour are generally preferred. There is a strong correlation between at-harvest dry matter and starch content, and soluble solid concentration and flavour when fruit are eating ripe. This suggests that carbon accumulation strongly influences the development of kiwifruit taste. The overall aim of the present study was to determine what factors affect carbon accumulation during Actinidia deliciosa berry development. One way of doing this is by comparing kiwifruit genotypes that differ greatly in their ability to accumulate dry matter in their fruit. Starch is the major component of dry matter content. It was hypothesized that genotypes were different in sink strength. Sink strength, by definition, is the effect of sink size and sink activity. Chapter 1 reviews fruit growth, kiwifruit growth and development and carbon metabolism. Chapter 2 describes the materials and methods used. Chapter 3, 4, 5 and 6 describes different types of experimental work. Chapter 7 contains the final discussions and the conclusions Three Actinidia deliciosa breeding populations were analysed in detail to confirm that observed differences in dry matter content were genetically determined. Fruit of the different genotypes differed in dry matter content mainly because of differences in starch concentrations and dry weight accumulation rates, irrespective of fruit size. More detailed experiments were therefore carried out on genotypes which varied most in fruit starch concentrations to determine why sink strengths were so different. The kiwifruit berry comprises three tissues which differ in dry matter content. It was initially hypothesised that observed differences in starch content could be due to a larger proportion of one or other of these tissues, for example, of the central core which is highest in dry matter content. The study results showed that this was not the case. Sink size, intended as cell number or cell size, was then investigated. The outer pericarp makes up about 60% of berry weight in ‘Hayward’ kiwifruit. The outer pericarp contains two types of parenchyma cells: large cells with low starch concentration, and small cells with high starch concentration. Large cell, small cell and total cell densities in the outer pericarp were shown to be not correlated with either dry matter content or fruit size but further investigation of volume proportion among cell types seemed justified. It was then shown that genotypes with fruit having higher dry matter contents also had a higher proportion of small cells. However, the higher proportion of small cell volume could only explain half of the observed differences in starch content. So, sink activity, intended as sucrose to starch metabolism, was investigated. In transiently starch storing sinks, such as tomato fruit and potato tubers, a pivotal role in carbon metabolism has been attributed to sucrose cleaving enzymes (mainly sucrose synthase and cell wall invertase) and to ADP-glucose pyrophosphorylase (the committed step in starch synthesis). Studies on tomato and potato genotypes differing in starch content or in final fruit soluble solid concentrations have demonstrated a strong link with either sucrose synthase or ADP-glucose pyrophosphorylase, at both enzyme activity and gene expression levels, depending on the case. Little is known about sucrose cleaving enzyme and ADP-glucose pyrophosphorylase isoforms. The HortResearch Actinidia EST database was then screened to identify sequences putatively encoding for sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoforms and specific primers were designed. Sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoform transcript levels were anlayzed throughout fruit development of a selection of four genotypes (two high dry matter and two low dry matter). High dry matter genotypes showed higher amounts of sucrose synthase transcripts (SUS1, SUS2 or both) and higher ADP-glucose pyrophosphorylase (AGPL4, large subunit 4) gene expression, mainly early in fruit development. SUS1- like gene expression has been linked with starch biosynthesis in several crop (tomato, potato and maize). An enhancement of its transcript level early in fruit development of high dry matter genotypes means that more activated glucose (UDP-glucose) is available for starch synthesis. This can be then correlated to the higher starch observed since soon after the onset of net starch accumulation. The higher expression level of AGPL4 observed in high dry matter genotypes suggests an involvement of this subunit in drive carbon flux into starch. Changes in both enzymes (SUSY and AGPse) are then responsible of higher starch concentrations. Low dry matter genotypes showed generally higher vacuolar invertase gene expression (and also enzyme activity), early in fruit development. This alternative cleavage strategy can possibly contribute to energy loss, in that invertases’ products are not adenylated, and further reactions and transport are needed to convert carbon into starch. Although these elements match well with observed differences in starch contents, other factors could be involved in carbon metabolism control. From the microarray experiment, in fact, several kinases and transcription factors have been found to be differentially expressed. Sink strength is known to be modified by application of regulators. In ‘Hayward’ kiwifruit, the synthetic cytokinin CPPU (N-(2-Chloro-4-Pyridyl)-N-Phenylurea) promotes a dramatic increase in fruit size, whereas dry matter content decreases. The behaviour of CPPU-treated ‘Hayward’ kiwifruit was similar to that of fruit from low dry matter genotypes: dry matter and starch concentrations were lower. However, the CPPU effect was strongly source limited, whereas in genotype variation it was not. Moreover, CPPU-treated fruit gene expression (at sucrose cleavage and AGPase levels) was similar to that in high dry matter genotypes. It was therefore concluded that CPPU promotes both sink size and sink activity, but at different “speeds” and this ends in the observed decrease in dry matter content and starch concentration. The lower “speed” in sink activity is probably due to a differential partitioning of activated glucose between starch storage and cell wall synthesis to sustain cell expansion. Starch is the main carbohydrate accumulated in growing Actinidia deliciosa fruit. Results obtained in the present study suggest that sucrose synthase and AGPase enzymes contribute to sucrose to starch conversion, and differences in their gene expression levels, mainly early in fruit development, strongly affect the rate at which starch is therefore accumulated. This results are interesting in that starch and Actinidia deliciosa fruit quality are tightly connected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study compiles the controlling factors for organic matter sedimentation patterns from a suite of organogeochemical parameters in surface sediments off Spitsbergen and direct seabed observations using a Remotely Operated Vehicle (ROV). In addition we assess its storage rates as well as the potential of carbon sinks on the northwestern margin of the Barents Sea with short sediment cores from a selected fjord environment (Storfjord). While sedimentation in the fjords is mainly controlled by river/meltwater discharge and coastal erosion by sea ice/glaciers resulting in high supply of terrigenous organic matter, Atlantic water inflow, and thus enhanced marine organic matter supply, characterizes the environment on the outer shelf and slope. Local deviations from this pattern, particularly on the shelf, are due to erosion and out washing of fine-grained material by bottom currents. Spots dominated by marine productivity close to the island have been found at the outer Isfjord and west off Prins Karls Forland as well as off the Kongsfjord/Krossfjord area and probably reflect local upwelling of nutrient-rich Atlantic water-derived water masses. Accumulation rates of marine organic carbon as well as reconstructed primary productivities decreased since the middle of the last century. Negative correlation of the Isfjord temperature record with reconstructed productivities in the Storfjord could be explained by a reduced annual duration of the marginal ice zone in the area due to global warming. Extremely high accumulation rates of marine organic carbon between 5.4 and 17.2 g/m**2/yr mark the Storfjord area, and probably high-latitude fjord environments in general, as a sink for carbon dioxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic geochemical investigations were performed on sediments of Leg 130 to reconstruct the depositional environment of the Ontong Java Plateau. The Miocene to Quaternary sediments collected during the drilling campaign are characterized by extremely low organic carbon contents. As indicated by C/N ratios and Rock-Eval data, most of the organic matter is probably of marine origin. Based on mass-accumulation rates of organic carbon, the paleoproductivity for the Miocene-Pliocene and the late Pliocene-Pleistocene time intervals as well as the modern surface-water production were estimated. The productivity values of the surface sediments (25-59 gC/m2/yr) reflect the various influences of the equatorial upwelling cell on the different sites. The accumulation rates of organic carbon are generally low; however, they show a distinct increase at 8 Ma and a decrease at 2 Ma.