922 resultados para Directly Observed Therapy
Resumo:
The long-term kinetics of T cell production following highly active antiretroviral therapy (HAART) were investigated in blood and lymph node in a group of HIV-infected subjects at early stage of established infection and prospectively studied for 72 wk. Before HAART, CD4 and CD8 T cell turnover was increased. However, the total number of proliferating CD4+ T lymphocytes, i.e., CD4+Ki67+ T lymphocytes, was not significantly different in HIV-infected (n = 73) and HIV-negative (n = 15) subjects, whereas proliferating CD8+Ki67+ T lymphocytes were significantly higher in HIV-infected subjects. After HAART, the total body number of proliferating CD4+Ki67+ T lymphocytes increased over time and was associated with an increase of both naive and memory CD4+ T cells. The maximal increase (2-fold) was observed at week 36, whereas at week 72 the number of proliferating CD4+ T cells dropped to baseline levels, i.e., before HAART. The kinetics of the fraction of proliferating CD4 and CD8 T cells were significantly correlated with the changes in the total body number of these T cell subsets. These results demonstrate a direct relationship between ex vivo measures of T cell production and quantitative changes in total body T lymphocyte populations. This study provides advances in the delineation of the kinetics of T cell production in HIV infection in the presence and/or in the absence of HAART.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent endogenous activator of the cell death pathway and functions by activating the cell surface death receptors 4 and 5 (DR4 and DR5). TRAIL is nontoxic in vivo and preferentially kills neoplastically transformed cells over normal cells by an undefined mechanism. Radiotherapy is a common treatment for breast cancer as well as many other cancers. Here we demonstrate that ionizing radiation can sensitize breast carcinoma cells to TRAIL-induced apoptosis. This synergistic effect is p53-dependent and may be the result of radiation-induced up-regulation of the TRAIL-receptor DR5. Importantly, TRAIL and ionizing radiation have a synergistic effect in the regression of established breast cancer xenografts. Changes in tumor cellularity and extracellular space were monitored in vivo by diffusion-weighted magnetic resonance imaging (diffusion MRI), a noninvasive technique to produce quantitative images of the apparent mobility of water within a tissue. Increased water mobility was observed in combined TRAIL- and radiation-treated tumors but not in tumors treated with TRAIL or radiation alone. Histological analysis confirmed the loss of cellularity and increased numbers of apoptotic cells in TRAIL- and radiation-treated tumors. Taken together, our results provide support for combining radiation with TRAIL to improve tumor eradication and suggest that efficacy of apoptosis-inducing cancer therapies may be monitored noninvasively, using diffusion MRI.
Resumo:
Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection.
Resumo:
Cytotoxic T lymphocytes (CTL) induce apoptosis by engaging death receptors or by exocytosis of cytolytic granules containing granzyme (Gzm) proteases and perforin. The lamins, which maintain the structural integrity of the nuclear envelope, are cleaved by caspases during caspase-mediated apoptosis. Although death receptor engagement and GzmB activate caspases, CTL also induce apoptosis during caspase blockade. Both GzmA and GzmB directly and efficiently cleave laminB in vitro, in situ in isolated nuclei and in cells loaded with perforin and Gzms, even in the presence of caspase inhibitors. LaminB is cleaved by GzmA at concentrations of 3 nM, but GzmB is 50 times less active. GzmA cuts laminB at R392; GzmB cuts at the caspase VEVD231 site. Characteristic laminB fragments generated by Gzm proteolysis also are observed during CTL lysis, even in the presence of caspase inhibitors or in cells overexpressing bcl-2. Lamins A/C are direct substrates of GzmA, but not GzmB. GzmA and GzmB therefore directly target critical caspase substrates in caspase-resistant cells.
Resumo:
Global, near-surface temperature data sets and their derivations are discussed, and differences between the Jones and Intergovernmental Panel on Climate Change data sets are explained. Global-mean temperature changes are then interpreted in terms of anthropogenic forcing influences and natural variability. The inclusion of aerosol forcing improves the fit between modeled and observed changes but does not improve the agreement between the implied climate sensitivity value and the standard model-based range of 1.5–4.5°C equilibrium warming for a CO2 doubling. The implied sensitivity goes from below the model-based range of estimates to substantially above this range. The addition of a solar forcing effect further improves the fit and brings the best-fit sensitivity into the middle of the model-based range. Consistency is further improved when internally generated changes are considered. This consistency, however, hides many uncertainties that surround observed data/model comparisons. These uncertainties make it impossible currently to use observed global-scale temperature changes to narrow the uncertainty range in the climate sensitivity below that estimated directly from climate models.
Resumo:
To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes introduces the DNA directly into the cytoplasm. In addition, a DNA-binding nuclear protein is incorporated into the HVJ-liposome particle to enhance plasmid transgene expression. The fusigenic viral liposome vector has proven to be efficient for the intracellular introduction of oligodeoxynucleotide, as well as intact genes up to 100 kbp, both in vitro and in vivo. Many animal tissues have been found to be suitable targets for fusigenic viral liposome DNA transfer. In the cardiovascular system, we have documented successful cytostatic gene therapy in models of vascular proliferative disease using antisense oligodeoxynucleotides against cell cycle genes, double-stranded oligodeoxynucleotides as "decoys" to trap the transcription factor E2F, and expression of a transgene encoding the constitutive endothelial cell form of nitric oxide synthase. Similar strategies are also effective for the genetic engineering of vein grafts and for the treatment of a mouse model of immune-mediated glomerular disease.
Resumo:
Mechanical injury to the adult mammalian spinal cord results in permanent loss of structural integrity at the lesion site and of the brain-controlled function distal to the lesion. Some of these consequences were permanently averted by altering the cellular constituents at the lesion site with x-irradiation delivered within a critical time window after injury. We have reported in a separate article that x-irradiation of sectioned adult rat spinal cord resulted in restitution of structural continuity and regrowth of severed corticospinal axons across and deep into the distal stump. Here, we report that after x-ray therapy of the lesion site severed corticospinal axons of transected adult rat spinal cord recover electrophysiologic control of activity of hindlimb muscles innervated by motoneurons distal to the lesion. The degree of recovery of control of muscle activity was directly related to the degree of restitution of structural integrity. This restitution of electrophysiologic function implies that the regenerating corticospinal axons reestablish connectivity with neurons within the target field in the distal stump. Our data suggest that recovery of structural continuity is a sufficient condition for the axotomized corticospinal neurons to regain some of their disrupted function in cord regions distal to the lesion site.
Resumo:
Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers.
Resumo:
Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue.
Resumo:
If deprived of wild-type p53 function, the body loses a guardian that protects against cancer. Restoration of p53 function has, therefore, been proposed as a means of counteracting oncogenesis. This concept of therapy requires prior knowledge with regard to proper balance of p53 function in a given target tissue. We have addressed this problem by targeting expression of the wild-type human p53 gene to the lens, a tissue entirely composed of epithelial cells that differentiate into elongated fiber cells. Transgenic mice expressing wild-type human p53 develop microphthalmia as a result of a defect in fiber formation that sets in shortly after birth. We see apoptotic cells that fail to undergo proper differentiation. In an effort to directly link the observed lens phenotype to the activity of the wild-type human p53 transgene, we also generated mice expressing a mutant human p53 allele that lacks wild-type function. A normal lens phenotype is restored in double transgenic animals that carry both wild-type and mutant human p53 alleles. Our study highlights the difficulties that can arise if p53 levels are improperly balanced in a differentiating tissue.
Resumo:
The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.
Resumo:
A vascularização tem um papel central na progressão tumoral e representa um alvo terapêutico de grande interesse. A inibição da angiogênese tem potencial de retardar a progressão tumoral e inibir metástase. Em decorrência disto, terapias anti-angiogênicas têm demonstrado ser promissora no controle do crescimento tumoral. Segundo a literatura, interferon-? (IFN?, ativador do sistema imune inato e adaptativo) e p19Arf (supressor de tumor e parceiro funcional de p53), quando estudados individualmente, alteram a vasculatura tumoral. Nosso grupo construiu e utilizou vetores adenovirais recombinantes portadores dos cDNAs de INFbeta e p19Arf e observou que a transferência desta combinação de genes induziu morte celular e diminuiu progressão tumoral, resultados foram observados em modelos murinos de melanoma B16 de terapia genica in situ, vacina profilática e vacina terapêutica. Neste trabalho, exploramos a ideia que a combinação dos vetores adenovirais portadores de INFbeta e p19Arf proporcionam efeitos anti-angiogênicos através de seu impacto em células endoteliais. Para averiguarmos essa hipótese, células endoteliais murinas (tEnd) foram transduzidas com os vetores adenovirais, revelando que o vetor Ad-p19 confere inibição da proliferação, formação de tubos, migração e induz aumento na expressão de genes relacionados a via de p53 e morte celular. O vetor Ad-IFNbeta sozinho ou adicionado em combinação com Ad-p19, não teve impacto significante nestes ensaios. Alternativamente, a influencia indireta, ou parácrina, nas células tEnd cultivadas juntamente com as células B16 transduzidas com os vetores adenovirais também foi investigada. Quando as células B16 foram transduzidas com Ad-IFNbeta ou a co-transdução Ad-IFNbeta+Ad-p19 em co-cultura com a linhagem tEnd, houve inibição da proliferação. Não observamos efeito inibitório na tEnd da co-cultura quando as células da B16 foram transduzidas somente com Ad-p19. Seguindo o ensaio de co-cultura, produzimos meio condicionado da B16 transduzida com os vetores e aplicamos esses meios nas células tEnd. Observamos que Ad-IFN, sozinho ou em combinação com Ad-19, diminuiu a viabilidade, proliferação e levou a morte das células tEnd. Neste trabalho, constamos que inibição de células endoteliais pode ser realizada por transdução direta com Ad-19 ou quando estas células são expostas ao ambiente modulado por células tumorais transduzidas com o vetor Ad-IFNbeta. Mesmo que a transferência gênica de ambos IFNbeta e p19Arf não demonstrou ser uma abordagem superior à aplicação dos genes isolados, observamos que nossa abordagem pode ter um impacto importante na inibição da angiogênese pelas células endoteliais
Resumo:
This paper provides a preliminary exploration of the application of Acceptance and Commitment Therapy (ACT) within the context of a forensic hospital. ACT has a reputation for being a clinically flexible and empirically sound therapeutic intervention, which appears uniquely suited for forensic hospital settings. However, no research has been published to date on the use of ACT as a treatment for forensic inpatients. The ACT approach directly aims to help people let go of the unwinnable struggles to control symptoms of mental illness, and instead focus on constructing a "life worth living." ACT interventions can equip forensic patients with the values and flexible behavioral repertoires necessary to lead lives that are personally meaningful and satisfying and do not involve inflicting harm to others. The ACT model also attempts to minimize the therapist-patient hierarchy through an emphasis on the ubiquitous nature of human suffering. This approach can be particularly useful when working with marginalized, treatment-resistant patients. Continued research on the application of ACT with forensic inpatients is recommended.
Resumo:
One might choke if they observed the lack of research on choking phobia. McNally's (1994) review of the literature on choking phobia found only 25 studies addressing the treatment of choking phobia. The vast majority of these were case studies and none were randomized controlled trials. A search of the literature since then yielded only a few more studies. Given the dearth of information available about choking phobia and its treatment, it is important to document cases treated successfully with novel approaches. My goal in this paper is therefore to illustrate the use of exposure therapy augmented by Acceptance and Commitment Therapy (ACT; e.g., see Hayes, Strosahl, & Wilson, 1999; Hayes and Strosahl, 2004) in the treatment of an adult male presenting with fear of choking and to offer suggestions for the optimal treatment of choking phobia. To my knowledge, there are no documented cases of elements of ACT being used in the treatment of choking phobia to be found in the literature.
Resumo:
Objective: To evaluate two cases of intermittent exotropia (IX(T)) treated by vision therapy the efficacy of the treatment by complementing the clinical examination with a 3-D video-oculography to register and to evidence the potential applicability of this technology for such purpose. Methods: We report the binocular alignment changes occurring after vision therapy in a woman of 36 years with an IX(T) of 25 prism diopters (Δ) at far and 18 Δ at near and a child of 10 years with 8 Δ of IX(T) in primary position associated to 6 Δ of left eye hypotropia. Both patients presented good visual acuity with correction in both eyes. Instability of ocular deviation was evident by VOG analysis, revealing also the presence of vertical and torsional components. Binocular vision therapy was prescribed and performed including different types of vergence, accommodation, and consciousness of diplopia training. Results: After therapy, excellent ranges of fusional vergence and a “to-the-nose” near point of convergence were obtained. The 3-D VOG examination (Sensoro Motoric Instruments, Teltow, Germany) confirmed the compensation of the deviation with a high level of stability of binocular alignment. Significant improvement could be observed after therapy in the vertical and torsional components that were found to become more stable. Patients were very satisfied with the outcome obtained by vision therapy. Conclusion: 3D-VOG is a useful technique for providing an objective register of the compensation of the ocular deviation and the stability of the binocular alignment achieved after vision therapy in cases of IX(T), providing a detailed analysis of vertical and torsional improvements.