931 resultados para Dihydrolipoamide Dehydrogenase
Resumo:
Primary cultures of cardiomyocytes represent a useful model for analyzing cardiac cell biology as well as pathogenesis of several cardiovascular disorders. Our aim was to standardize protocols for determining the damage of cardiac cells cultured in vitro by measuring the creatine kinase and its cardiac isotype and lactate dehydrogenase activities in the supernatants of mice cardiomyocytes submitted to different protocols of cell lysis. Our data showed that due to its higher specificity, the cardiac isotype creatine kinase was the most sensitive as compared to the others studied enzymatic markers, and can be used to monitor and evaluate cardiac damage in in vitro assays.
Resumo:
La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.
Resumo:
The schistosomicidal properties of Nigella sativaseeds were tested in vitro against Schistosoma mansoni miracidia, cercariae, and adult worms. Results indicate its strong biocidal effects against all stages of the parasite and also showed an inhibitory effect on egg-laying of adult female worms. In the present work we also studied the effects of crushed seeds on some antioxidant enzymes; which have a role in protection of adult worms against host oxidant killing; as well as some enzymes of glucose metabolism; which have a crucial role in the survival of adult worms inside their hosts. The data revealed that the used drug induce an oxidative stress against adult worms which indicated by a decrease in the activities of both antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and glutathione reductase and enzymes of glucose metabolism, hexokinase and glucose-6-phosphate dehydrogenase. Disturbing of such enzymes of adult worms using N. sativa seeds could in turn render the parasite vulnerable to damage by the host and may play a role in the antischistosomal potency of the used drug.
Resumo:
The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.
Resumo:
This work has been carried out to investigate the effect of Schistosoma mansoni infection on mice livers after treatment with the ethanolic extract of Citrus reticulata root or the oleo-resin extract from Myrrh of Commiphora molmol tree (Mirazid), as a new antishistosomal drug. Marker enzymes for different cell organelles were measured; succinate dehydrogenase (SDH); lactate dehydrogenase (LDH) and its isoenzymes; glucose-6-phosphatase (G-6-Pase); acid phosphatase (AP) and 5'- nucleotidase. Liver function enzymes; aspartate aminotransferase (AST); alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were also estimated. Parasitological studies through ova count and worm burden will also be taken into consideration. The results showed a marked reduction in SDH, LDH, AST, and ALT enzyme activities and a significant increase in G-6-Pase, AP, 5'- nucleotidase, and ALP after S. mansoni infection. A noticeable alteration in LDH subunits were also noticed. Treatment with C. reticulata or Mirazid improved all the previous enzyme activities with a noticeable reduction in ova count and worm burden.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.
Resumo:
The newborn blood spot pre-screening information leaflet for parents has been revised to include information about sickle cell disorders (SCD) and medium chain�acyl coA dehydrogenase deficiency (MCADD) family history. The revised pre-screening leaflet should be given to all pregnant women by 30 weeks gestation and reissued to parents following delivery, before day five.Further information about screening and the care of children with SCD is available at:
Resumo:
Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
To analyze the genetic relatedness and phylogeographic structure of Aedes aegypti, we collected samples from 36 localities throughout the Americas (Brazil, Peru, Venezuela, Guatemala, US), three from Africa (Guinea, Senegal, Uganda), and three from Asia (Singapore, Cambodia, Tahiti). Amplification and sequencing of a fragment of the mitochondrial NADH dehydrogenase subunit 4 gene identified 20 distinct haplotypes, of which 14 are exclusive to the Americas, four to African/Asian countries, one is common to the Americas and Africa, and one to the Americas and Asia. Nested clade analysis (NCA), pairwise distribution, statistical parsimony, and maximum parsimony analyses were used to infer evolutionary and historic processes, and to estimate phylogenetic relationships among haplotypes. Two clusters were found in all the analyses. Haplotypes clustered in the two clades were separated by eight mutational steps. Phylogeographic structure detected by the NCA was consistent with distant colonization within one clade and fragmentation followed by range expansion via long distance dispersal in the other. Three percent of nucleotide divergence between these two clades is suggestive of a gene pool division that may support the hypothesis of occurrence of two subspecies of Ae. aegypti in the Americas.
Resumo:
BACKGROUND: Metabolic syndrome (MetS) associated with psychiatric disorders and psychotropic treatments represents a major health issue. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an enzyme that catalyzes tissue regeneration of active cortisol from cortisone. Elevated enzymatic activity of 11β-HSD1 may lead to the development of MetS. METHODS: We investigated the association between seven HSD11B1 gene (encoding 11β-HSD1) polymorphisms and BMI and MetS components in a psychiatric sample treated with potential weight gain-inducing psychotropic drugs (n=478). The polymorphisms that survived Bonferroni correction were analyzed in two independent psychiatric samples (nR1=168, nR2=188) and in several large population-based samples (n1=5338; n2=123 865; n3>100 000). RESULTS: HSD11B1 rs846910-A, rs375319-A, and rs4844488-G allele carriers were found to be associated with lower BMI, waist circumference, and diastolic blood pressure compared with the reference genotype (Pcorrected<0.05). These associations were exclusively detected in women (n=257) with more than 3.1 kg/m, 7.5 cm, and 4.2 mmHg lower BMI, waist circumference, and diastolic blood pressure, respectively, in rs846910-A, rs375319-A, and rs4844488-G allele carriers compared with noncarriers (Pcorrected<0.05). Conversely, carriers of the rs846906-T allele had significantly higher waist circumference and triglycerides and lower high-density lipoprotein-cholesterol exclusively in men (Pcorrected=0.028). The rs846906-T allele was also associated with a higher risk of MetS at 3 months of follow-up (odds ratio: 3.31, 95% confidence interval: 1.53-7.17, Pcorrected=0.014). No association was observed between HSD11B1 polymorphisms and BMI and MetS components in the population-based samples. CONCLUSIONS: Our results indicate that HSD11B1 polymorphisms may contribute toward the development of MetS in psychiatric patients treated with potential weight gain-inducing psychotropic drugs, but do not play a significant role in the general population.
Resumo:
Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.
Resumo:
Most cases of acute acquired toxoplasmosis (AAT) are oligosymptomatic and self-limited. Therefore, these infections rarely indicate treatment. Prospective studies of AAT patients are rare in the medical literature. The frequency of systemic manifestations has not been sufficiently studied. In order to search for risks factors for systemic and ocular involvement, 37 patients were submitted to a diagnostic investigative protocol. The most frequent findings were lymph node enlargement (94.6%), asthenia (86.5%), headache (70.3%), fever (67.6%) and weight loss (62.2%). Hepatomegaly and/or splenomegaly were present in 21.6% of cases (8/37). Liver transaminases were elevated in 11 patients (29.7%) and lactic dehydrogenase in 17 patients (45.9%). Anaemia was found in four patients (10.8%), leucopoenia in six patients (16.2%), lymphocytosis in 14 patients (37.8%) and thrombocytopenia in one patient (2.7%). Fundoscopic examination revealed retinochoroiditis in four patients (10.8%). No statistical association was found between any one morbidity and retinochoroiditis. Nevertheless, a significant association was found between the presence of more than eight morbidity features at evaluation and long-lasting disease. An ideal diagnostic protocol for AAT would include evidence of systemic involvement. Such a protocol could be used when planning treatment.
Resumo:
E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl)-2'-methyliden]-quinoline (IQ) is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ) as a control. After haemolysis, superoxide dismutase (SOD), catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively). Glutathione peroxidase activity was also lowered (31%) in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.