945 resultados para Digital Signal Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gastroesophageal reflux disease (GERD) is a common cause of chronic cough. For the diagnosis and treatment of GERD, it is desirable to quantify the temporal correlation between cough and reflux events. Cough episodes can be identified on esophageal manometric recordings as short-duration, rapid pressure rises. The present study aims at facilitating the detection of coughs by proposing an algorithm for the classification of cough events using manometric recordings. The algorithm detects cough episodes based on digital filtering, slope and amplitude analysis, and duration of the event. The algorithm has been tested on in vivo data acquired using a single-channel intra-esophageal manometric probe that comprises a miniature white-light interferometric fiber optic pressure sensor. Experimental results demonstrate the feasibility of using the proposed algorithm for identifying cough episodes based on real-time recordings using a single channel pressure catheter. The presented work can be integrated with commercial reflux pH/impedance probes to facilitate simultaneous 24-hour ambulatory monitoring of cough and reflux events, with the ultimate goal of quantifying the temporal correlation between the two types of events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The never-stopping increase in demand for information transmission capacity has been met with technological advances in telecommunication systems, such as the implementation of coherent optical systems, advanced multilevel multidimensional modulation formats, fast signal processing, and research into new physical media for signal transmission (e.g. a variety of new types of optical fibers). Since the increase in the signal-to-noise ratio makes fiber communication channels essentially nonlinear (due to the Kerr effect for example), the problem of estimating the Shannon capacity for nonlinear communication channels is not only conceptually interesting, but also practically important. Here we discuss various nonlinear communication channels and review the potential of different optical signal coding, transmission and processing techniques to improve fiber-optic Shannon capacity and to increase the system reach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advanced signal processing, such as multi-channel digital back propagation and mid span optical phase conjugation, can compensate for inter channel nonlinear effects in point to point links. However, once such are effects are compensated, the interaction between the signal and noise fields becomes dominant. We will show that this interaction has a direct impact on the signal to noise ratio improvement, observing that ideal optical phase conjugation offers 1.5 dB more performance benefit than DSP based compensation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by means of i)forward steps for the upgrading of an approximation and/or ii) backward steps for the corresponding downgrading. The advantage of the strategy is illustrated by approximation of music signals using redundant trigonometric dictionaries. In addition to rendering stunning improvements in sparsity with respect to the concomitant trigonometric basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier Transform

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry's standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device.^ This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. ^ In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. ^ The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation consists of two independent musical compositions and an article detailing the process of the design and assembly of an electric guitar with particular emphasis on the carefully curated suite of embedded effects.

The first piece, 'Phase Locked Loop and Modulo Games' is scored for electric guitar and a single echo of equal volume less than a beat away. One could think of the piece as a 15 minute canon at the unison at the dotted eighth note (or at times the quarter or triplet-quarter), however the compositional motivation is more about weaving a composite texture between the guitar and its echo that is, while in theory extremely contrapuntal, in actuality is simply a single [superhuman] melodic line.

The second piece, 'The Dogma Loops' picks up a few compositional threads left by ‘Phase Locked Loop’ and weaves them into an entirely new tapestry. 'Phase Locked Loop' is motivated by the creation of a complex musical composite that is for the most part electronically transparent. 'The Dogma Loops' questions that same notion of composite electronic complexity by essentially asking a question: "what are the inputs to an interactive electronic system that create the most complex outputs via the simplest musical means possible?"

'The Dogma Loops' is scored for Electric Guitar (doubling on Ukulele), Violin and Violoncello. All of the principal instruments require an electronic pickup (except the Uke). The work is in three sections played attacca; [Automation Games], [Point of Origin] and [Cloning Vectors].

The third and final component of the document is the article 'Finding Ibrida.' This article details the process of the design and assembly of an electric guitar with integrated effects, while also providing the deeper context (conceptual and technical) which motivated the efforts and informed the challenges to hybridize the various technologies (tubes, transistors, digital effects and a microcontroller subsystem). The project was motivated by a desire for rigorous technical and hands-on engagement with analog signal processing as applied to the electric guitar. ‘Finding Ibrida’ explores sound, some myths and lore of guitar tech and the history of electric guitar distortion and its culture of sonic exploration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a major global health issue as it is the most prevalent sustained supraventricular arrhythmia. Catheter-based ablation of some parts of the atria is considered an effective treatment of AF. The main objective of this research is to analyze atrial intracardiac electrograms (IEGMs) and extract insightful information for the ablation therapy. Throughout this thesis we propose several computationally efficient algorithms that take streams of IEGMs from different atrial sites as the input signals, sequentially analyze them in various domains (e.g., time and frequency), and create color-coded three-dimensional map of the atria to be used in the ablation therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is based on the novel use of a very high fidelity decimation filter chain for Electrocardiogram (ECG) signal acquisition and data conversion. The multiplier-free and multi-stage structure of the proposed filters lower the power dissipation while minimizing the circuit area which are crucial design constraints to the wireless noninvasive wearable health monitoring products due to the scarce operational resources in their electronic implementation. The decimation ratio of the presented filter is 128, working in tandem with a 1-bit 3rd order Sigma Delta (ΣΔ) modulator which achieves 0.04 dB passband ripples and -74 dB stopband attenuation. The work reported here investigates the non-linear phase effects of the proposed decimation filters on the ECG signal by carrying out a comparative study after phase correction. It concludes that the enhanced phase linearity is not crucial for ECG acquisition and data conversion applications since the signal distortion of the acquired signal, due to phase non-linearity, is insignificant for both original and phase compensated filters. To the best of the authors’ knowledge, being free of signal distortion is essential as this might lead to misdiagnosis as stated in the state of the art. This article demonstrates that with their minimal power consumption and minimal signal distortion features, the proposed decimation filters can effectively be employed in biosignal data processing units.