909 resultados para Differential Inclusions with Constraints
Resumo:
The mechanism of the formation of periodic segmentation cracks of a coating plated on a substrate with periodic subsurface inclusions (PSI) is investigated. The internal stress in coating and subsequently the strain energy release rate (SERR) of the segmentation cracks are computed with finite element method (FEM). And the effect of the geometrical parameters of the PSI is studied. The results indicate that the ratio of the width of the inclusion to the period of the repeated structure has an optimum value, at which the maximum internal tensile stress and SERR arise. On the other hand, the ratio of the max-thickness of the inclusion to the thickness of the coating has a threshold value, above which the further increase of this ratio should seldom influence the internal stress or the SERR.
Resumo:
An analytical model for thermal conductivity of composites with nanoparticles in a matrix is developed based on the effective medium theory by introducing the intrinsic size effect of thermal conductivity of nanoparticles and the interface thermal resistance effect between two phases. The model predicts the percolation of thermal conductivity with the volume fraction change of the second phase, and the percolation threshold depends on the size and the shape of the nanoparticles. The theoretical predictions are in agreement with the experimental results.
Resumo:
The tensile behaviors of a hard chromium coating plated on a steel substrate with periodic laser pre-quenched regions have been investigated by experimental and theoretic analysis. In the experiment, three specimens are adopted to study the differences between homogeneous and periodic inhomogeneous substrates as well as between periodic inhomogeneous substrate of relatively softer and stiffer materials. The unique characteristics have been observed in the specimen of periodic inhomogeneous substrate under quasi-static tension loading. With the periodic laser pre-quenched regions being treated as periodic subsurface inclusions (PSI), the unique stress/strain pattern of the specimen is obtained by analytical modeling and FEM analysis, and the mechanisms accounting for the experimental results is preliminarily illustrated.
Resumo:
A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional analysis gives quite satisfactory results.
Resumo:
The thermal conductivity of periodic composite media with spherical inclusions embedded in a homogeneous matrix is discussed. Using Green's function, we show that the Rayleigh identity can be generalized to deal with the thermal properties of these systems. A technique for calculating effective thermal conductivities is proposed. Systems with cubic symmetries (including simple cubic, body centered cubic and face centered cubic symmetry) are investigated in detail, and useful formulae for evaluating effective thermal conductivities are derived.
Resumo:
In this paper, a theory is developed to calculate the average strain field in the materials with randomly distributed inclusions. Many previous researches investigating the average field behaviors were based upon Mori and Tanaka's idea. Since they were restricted to studying those materials with uniform distributions of inclusions they did not need detailed statistical information of random microstructures, and could use the volume average to replace the ensemble average. To study more general materials with randomly distributed inclusions, the number density function is introduced in formulating the average field equation in this research. Both uniform and nonuniform distributions of inclusions are taken into account in detail.
Resumo:
This paper analyzes auctions where bidders face nancial constraints that may force them to resell part of the property of the good (or subcontract part of a project) at a resale market. First we show that the ine¢ cient speculative equilibria of second- price auctions (Garratt and Tröger, 2006) generalizes to situations with partial resale where only the high value bidder is nancially constrained. However, when all players face nancial constraints the ine¢ cient speculative equilibria disappear. Therefore, for auctioning big facilities or contracts where all bidders are nancially constrained and there is a resale market, the second price auction remains a simple and appropriate mechanism to achieve an e¢ cient allocation.
Resumo:
This thesis brings together four papers on optimal resource allocation under uncertainty with capacity constraints. The first is an extension of the Arrow-Debreu contingent claim model to a good subject to supply uncertainty for which delivery capacity has to be chosen before the uncertainty is resolved. The second compares an ex-ante contingent claims market to a dynamic market in which capacity is chosen ex-ante and output and consumption decisions are made ex-post. The third extends the analysis to a storable good subject to random supply. Finally, the fourth examines optimal allocation of water under an appropriative rights system.
Resumo:
In this thesis I present a study of W pair production in e+e- annihilation using fully hadronic W+W- events. Data collected by the L3 detector at LEP in 1996-1998, at collision center-of-mass energies between 161 and 189 GeV, was used in my analysis.
Analysis of the total and differential W+W- cross sections with the resulting sample of 1,932 W+W- → qqqq event candidates allowed me to make precision measurements of a number of properties of the W boson. I combined my measurements with those using other W+W- final states to obtain stringent constraints on the W boson's couplings to fermions, other gauge bosons, and scalar Higgs field by measuring the total e+e- → W+W- cross section and its energy dependence
σ(e+e- → W+W-) =
{2.68+0.98-0.67(stat.)± 0.14(syst.) pb, √s = 161.34 GeV
{12.04+1.38-1.29(stat.)± 0.23(syst.) pb, √s = 172.13 GeV
{16.45 ± 0.67(stat.) ± 0.26(syst.) pb, √s = 182.68 GeV
{16.28 ± 0.38(stat.) ± 0.26(syst.) pb, √s = 188.64 GeV
the fraction of W bosons decaying into hadrons
BR(W →qq') = 68.72 ± 0.69(stat.) ± 0.38(syst.) %,invisible non-SM width of the W boson
ΓinvisibleW less than MeV at 95% C.L.,the mass of the W boson
MW = 80.44 ± 0.08(stat.)± 0.06(syst.) GeV,the total width of the W boson
ΓW = 2.18 ± 0.20(stat.)± 0.11(syst.) GeV,the anomalous triple gauge boson couplings of the W
ΔgZ1 = 0.16+0.13-0.20(stat.) ± 0.11(syst.)
Δkγ = 0.26+0.24-0.33(stat.) ± 0.16(syst.)
λγ = 0.18+0.13-0.20(stat.) ± 0.11(syst.)
No significant deviations from Standard Model predictions were found in any of the measurements.