967 resultados para Diesel fuels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Considerando que o Brasil detém uma vasta gama de matérias-primas para produção de biodiesel, e também que há a possibilidade de produção em pequena escala, prima-se por estudos de cunho econômico a partir de metodologias de fácil execução. O objetivo do trabalho foi demonstrar uma metodologia e sua aplicação para avaliação dos custos inseridos dentro do processo produtivo e de utilização do biodiesel. A metodologia foi aplicada a biodieseis originários de óleo de soja, girassol, frango e sebo bovino, dos quais se avaliaram economicamente os custos fixos e variáveis para conversão química dos óleos e gorduras em ésteres metílicos, em uma planta de produção experimental. Os custos de produção para cada uma das quatro citadas são distintos em função do valor inicial por litro de cada uma. Também fora avaliado o custo específico e o consumo específico de cada um dos biodieseis, a fim de determinar a diferença em relação ao óleo diesel comercial. No estudo de caso, os resultados mostraram vantagens para o óleo diesel, tanto no custo quanto no consumo. Comparando-se os biodieseis, o de sebo bovino apresentou-se com o menor custo de produção e o menor consumo.
Resumo:
An experimental investigation of air enrichment in a combustion chamber designed to incinerate aqueous residues is presented. Diesel fuel and liquefied petroleum gas (LPG) were used independently as fuels. An increase of 85% in the incineration capacity was obtained with nearly 50% O-2 in the oxidant gas, in comparison to incineration with air only. The incineration capacity continues increasing for enrichment levels above 50% O-2 , although at a lower pace. For complete oxy-flame combustion (100% O-2 ), the increase of the incineration capacity was about 110% relative to the starting conditions and about 13.5% relative to the condition with 50% O-2 . The CO concentration measured near the flame front decreases drastically with the increase of O-2 content in the oxidant gas. At the chamber exit, the CO concentration was always near zero, indicating that the chamber residence time was sufficient to complete fuel oxidation in any test setting. For diesel fuel, the NOx was entirely formed in the first region of the combustion chamber. For diesel fuel, there was some increase in the NOx concentration up to 35% of O-2 ; this increase became very sharp after that. From 60 ppm, at operation with air only, the NOx concentration raises to 200 ppm at 35% O-2 , and then to 2900 ppm at 74% O-2 . The latter corresponds to six times more NOx in terms of the ratio of mass of NO to mass of residue, compared to the situation of combustion with air only. For LPG, the NOx concentrations reached 4200 ppm at 80% O-2 , corresponding to nine times more, also in terms of the ratio of mass of NO to mass of residue, in comparison with combustion with air only. Results of different techniques used to control the NOx emission during air enrichment are discussed: (a) variation of the recirculated zone intensity, (b) increase of the spray Sauter mean diameter, (c) fuel staging, (d) oxidizer staging, and (e) ammonia injection. The present paper shows that NOx emission may be controlled without damage of the increase of incineration capacity by the enrichment and with low emission of partial oxidation pollutants such as CO.
Resumo:
Waste frying oil has been used to optimize the production of biodiesel. Biodiesel was prepared through sodium ethoxide catalyzed methanolysis from the transesterification of recycled waste frying oil. Optimization of the transesterification reaction for biodiesel production was carried out by means of statistical analyses using ANOVA. The optimum conditions for reaction were the following: a oil methanol mole ratio of 1:9, temperature of 50 degrees C, catalyst mass fraction of 0.9 %, and reaction time of 40 min, which enabled a yield of 98.7 % determined by gas chromatography/mass spectrometry (GC/MS) analysis. The density and viscosity of biodiesel/diesel blends have been determined as a function of composition at several temperatures.
Resumo:
High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. We examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.
Resumo:
The biodegradability of pure diesel and biodiesel and blends with different proportions of biodiesel (2% (commercial); 5% and 20%) was evaluated employing the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments (soil from a petrol station or water from a river) were carried out in Bartha biometer flasks (250 ml), and used to measure the microbial CO 2 production. With the DCPIP test, the capability of three inocula to biodegrade the blends was tested. Results show that although biodiesel is more easily and faster biodegraded than diesel oil, among the blends evaluated (2%, 5% and 20%), only the blend with higher concentration of biodiesel presented biodegradability significantly different from diesel and it was not verified an improvement on the biodegradation of the diesel by means of co-metabolism. © 2008 Academic Journals.
Resumo:
The objective of this study was to evaluate the dynamic performance of an agricultural tractor utilizing distilled biodiesel (50% ethylic + 50% methylic) as a function of the proportion of biodiesel and diesel of petroleum (0 and 100%, 5 and 95%, 15 and 85%, 25 and 75%, 50 and 50%, 75 and 25% and 100 and 0%), respectively. This research was done in the area of the Department of Rural Engineering of the Paulista State University (UNESP), Jaboticabal Campus, SP, located in the latitude 21° 14′ 28″ S and longitude 48° 17′12″ W. A tractor 4 x 2 FWA was used, with a 73.6 kW (100 HP) motor and a ballast tractor. The biodiesel used was produced from spent oil from food frying. The experimental design was entirely randomized, with 7 treatments and 5 repetitions, totaling 35 observations. The results showed that the biodiesel and diesel blend significantly influenced the hourly volumetric consumption, hourly mass consumption, fuel consumption per worked area and specific fuel consumption variables. When the tractor operated with 100% of biodiesel (B100) the specific fuel consumption increased 18% on average in relation to diesel (B0).
Resumo:
The current technological development made by the absorption refrigeration system is an economic and ambient alternative in comparison to the vapor cycle, possessing an advantage that uses thermal energy that is less noble. Chillers of absorption are used widely in the air conditioned industries, because they can be set in motion through hot water vapors that burn natural gas, solar energy, biomasses amongst others instead of electricity. These systems allow it to reduce the tips of electric demand and balance the rocking of energy demand. This work has had a main objective to simulate a absorption refrigeration cycle with lithium-water bromide solution using biogas of sanitary landfill, and mixtures of this with natural gas. These results shown to the energy viability of the system burning biogas and its mixtures with natural gas in the generator, when compared with equipments that uses traditional fuels (natural gas, oil diesel, amongst others), for operation the commercial chillers with 15 kW of the refrigeration capacity and temperature of the water in the entrance of 14°C and the exit of 7°C.
Resumo:
Incluye Bibliografía
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS