525 resultados para Dexamethasone
Resumo:
In bacterial meningitis, several pharmacodynamic factors determine therapeutic success-when defined as sterilization of the CSF: (1) Local host defense deficits in the CNS require the use of bactericidal antibiotics to sterilize the CSF. (2) CSF antibiotic concentrations that are at least 10-fold above the MBC are necessary for maximal bactericidal activity. Protein binding, low pH, and slow bacterial growth rates are among the factors that may explain the high antibiotic concentrations necessary in vivo. (3) High CSF peak concentrations that lead to rapid bacterial killing appear more important than prolonged suprainhibitory concentrations, probably because very low residual levels in the CSF prevent bacterial regrowth, even during relatively long dosing intervals. (4) Penetration of antibiotics into the CSF is significantly impaired by the blood-brain barrier and thus, very high serum levels are necessary to achieve the CSF concentrations required for optimal bactericidal activity. Beyond these principles, recent data suggests that rapid lytic killing of bacteria in the CSF may have harmful effects on the brain because of the release of biologically active products from the lysed bacteria. Since rapid CSF sterilization remains a key therapeutic goal, the harmful consequences of bacterial lysis present a major challenge in the therapy of bacterial meningitis. Currently, dexamethasone represents that only clinically beneficial approach to reduce the harmful effects of bacterial lysis, and novel approaches are required to improve the outcome of this serious infection.
Resumo:
A study was made of the effects of antibiotics and corticosteroids on parameters that reflect brain dysfunction and potential neurological damage in experimental pneumococcal meningitis in rabbits. Brain water content was 398 +/- 10 g/100 g dry weight in normal rabbits and 410 +/- 11 g in rabbits after 24 hr of infection (P less than .001). Cerebrospinal fluid (CSF) lactate levels increased from 16.3 +/- 3.4 mg/dl to 69.5 +/- 28.2 mg/dl (P less than .001), and CSF pressure increased by +8.3 +/- 3.6 mm Hg (P less than .005) over the same interval. Antibiotic therapy with ampicillin sterilized CSF and normalized CSF pressure and brain water content in all animals within 24 hr, while CSF lactate levels remained elevated. Administration of methyl prednisolone, 30 mg/kg, or dexamethasone, 1 mg/kg, 15 and 22 hr after infection completely reversed the development of brain edema, but only dexamethasone also significantly reduced the increase in CSF lactate level (43.8 +/- 12.3 mg/dl) and CSF pressure (+1.8 +/- 2.7 mm Hg). Methyl prednisolone did not significantly affect pressure or lactate levels.
Resumo:
OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.
Resumo:
OBJECTIVE: In a recent study, we demonstrated that mesenchymal stem cells (MSCs) derived from the synovial membranes of bovine shoulder joints could differentiate into chondrocytes when cultured in alginate. The purpose of the present study was to establish the conditions under which synovial MSCs derived from aging human donors can be induced to undergo chondrogenic differentiation using the same alginate system. METHODS: MSCs were obtained by digesting the knee-joint synovial membranes of osteoarthritic human donors (aged 59-76 years), and expanded in monolayer cultures. The cells were then seeded at a numerical density of 4x10(6)/ml within discs of 2% alginate, which were cultured in serum-containing or serum-free medium (the latter being supplemented with 1% insulin, transferrin, selenium (ITS). The chondrogenic differentiation capacity of the cells was tested by exposing them to the morphogens transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, insulin-like growth factor-1 (IGF-1), bone morphogenetic protein-2 (BMP-2) and BMP-7, as well as to the synthetic glucocorticoid dexamethasone. The relative mRNA levels of collagen types I and II, of aggrecan and of Sox9 were determined quantitatively by the real-time polymerase chain reaction (PCR). The extracellular deposition of proteoglycans was evaluated histologically after staining with Toluidine Blue, and that of type-II collagen by immunohistochemistry. RESULTS: BMP-2 induced the chondrogenic differentiation of human synovial MSCs in a dose-dependent manner. The response elicited by BMP-7 was comparable. Both of these agents were more potent than TGF-beta1. A higher level of BMP-2-induced chondrogenic differentiation was achieved in the absence than in the presence of serum. In the presence of dexamethasone, the BMP-2-induced expression of mRNAs for aggrecan and type-II collagen was suppressed; the weaker TGF-beta1-induced expression of these chondrogenic markers was not obviously affected. CONCLUSIONS: We have demonstrated that synovial MSCs derived from the knee joints of aging human donors possess chondrogenic potential. Under serum-free culturing conditions and in the absence of dexamethasone, BMP-2 and BMP-7 were the most potent inducers of this transformation process.
Resumo:
OBJECTIVE: To evaluate the effects of a single preoperative dose of steroid on thyroidectomy outcomes. BACKGROUND: Nausea, pain, and voice alteration frequently occur after thyroidectomy. Because steroids effectively reduce nausea and inflammation, a preoperative administration of steroids could improve these thyroidectomy outcomes. METHODS: Seventy-two patients (men = 20, women = 52) undergoing thyroidectomy for benign disease were included in this randomized, controlled, 2 armed (group D: 8 mg dexamethasone, n = 37; group C: 0.9% NaCl, n = 35), double-blinded study (clinical trial number NCT00619086). Anesthesia, surgical procedures, antiemetics, and analgesic treatments were standardized. Nausea (0-3), pain (visual analog scale), antiemetic and analgesic requirements, and digital voice recording were documented before and 4, 8, 16, 24, 36, and 48 hours after surgery. Patients were followed-up 30 days after hospital discharge. RESULTS: Baseline characteristics were similar among the 2 treatment groups. Nausea was pronounced in the first 16 hours postoperatively (scores were <0.3 and 0.8-1.0 for group D and C, respectively (P = 0.005)), and was significantly lower in group D compared with group C during the observation period (P = 0.001). Pain diminished within 48 hours after surgery (visual analog scale 20 and 35 in group D and C, respectively (P = 0.009)). Antiemetic and analgesic requirements were also significantly diminished. Changes in voice mean frequency were less prominent in the dexamethasone group compared with the placebo group (P = 0.015). No steroid-related complications occurred. CONCLUSION: A preoperative single dose of steroid significantly reduced nausea, vomiting, and pain, and improved postoperative voice function within the first 48 hours (most pronounced within 16 hours) after thyroid resection; this strategy should be routinely applied in thyroidectomies.
Resumo:
Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.
Resumo:
Endothelin-1 (ET-1) is mainly secreted by endothelial cells and acts as a potent vasoconstrictor. In addition ET-1 has also been shown to have pleiotropic effects on a variety of other systems including adaptive immunity. There are two main ET-1 receptors, ET(A) and ET(B), which have different tissue and functional distributions. Dendritic cells (DC) are pivotal antigen-presenting cells linking the innate with the adaptive immune system. DC are sentinels expressing pattern-recognition receptors, e.g. the toll-like receptors (TLR) for detecting danger signals released from pathogens or tissue injury. Here we show for the first time that stimulation of human monocyte-derived DC with exogenous as well as endogenous selective TLR4 and TLR2 agonists induces the production of ET-1 in a dose- and time-dependent manner. 'Alternative' activation of DC in the presence of 1alpha,25-dihydroxyvitamin D(3) results in a marked potentiation of the endothelin response, whereas prostaglandin E(2) or dexamethasone do not increase ET-1 production. Furthermore, chetomin, an inhibitor of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), prevents TLR-mediated secretion of ET-1. Surprisingly, stimulation of human monocytes with LPS does not lead to secretion of detectable amounts of ET-1. These results suggest a role of ET-1 as an important player in human DC biology and innate immunity in general.
Resumo:
PURPOSE: To clarify whether perioperative glucocorticosteroid treatment used in association with repair of facial fractures predisposes to disturbance in surgical wound healing (DSWH). PATIENTS AND METHODS: Retrospective review of records of patients who had undergone open reduction, with or without ostheosynthesis, or had received reconstruction of orbital wall fractures during the 2-year period from 2003 to 2004. RESULTS: Steroids were administered to 100 patients (35.7%) out of a total of 280. Dexamethasone was most often used, with the most common regimen being dexamethasone 10 mg every 8 hours over 16 hours, with a total dose of 30 mg. The overall DSWH rate was 3.9%. The DSWH rate for patients who had received perioperative steroids was 6.0%, and the corresponding rate for patients who did not receive steroids was 2.8%. The difference was not statistically significant. An intraoral surgical approach remained the only significant predictor to DSWH. CONCLUSIONS: With regard to DSWH, patients undergoing operative treatment of facial fractures can safely be administered doses of 30 mg or less of perioperative glucocorticosteroids equivalent to dexamethasone.
Resumo:
Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.
Resumo:
Postnatal formation of alveoli can be largely prevented by glucocorticoid treatment, which accelerates alveolar wall thinning and inhibits outgrowth of new interalveolar septa. Since a double capillary network is a prerequisite for interalveolar wall formation, we hypothesized that glucocorticoid treatment inhibited alveolar formation, indirectly, by inducing precocious microvascular maturation. Between 4 and 60 days we followed up qualitatively and quantitatively the effects of 2 weeks (days 2-15) of daily Decadron (Dexamethasone phosphate) injections on the lung structure. Glucocorticoid induced only small changes in body weight or lung volume. However, during the first 2 weeks, it accelerated alveolar wall thinning and microvascular maturation and partly suppressed the outgrowth of new interalveolar septa. In Decadron-treated rats, the interstitial tissue mass was significantly reduced during the first 2 weeks, and a larger alveolar surface area was endowed with a capillary monolayer on days 10 and 13. One week after drug withdrawal, the trend towards precocious maturation of the lung was reversed. Lipofibroblasts reappeared, and inter-airspace septa regressed towards a more immature state. We found indications of a second burst of alveolization by resumption of secondary septa formation. The late sequelae of Decadron treatment (day 60) were manifested as an 'emphysematous' condition of the lungs, with larger and fewer airspaces, the delayed alveolization being insufficient to compensate for the initial deficit.
Resumo:
In this study, we established cell culture conditions for primary equine hepatocytes allowing cytochrome P450 enzyme (CYP) induction experiments. Hepatocytes were isolated after a modified method of Bakala et al. (2003) and cultivated on collagen I coated plates. Three different media were compared for their influence on morphology, viability and CYP activity of the hepatocytes. CYP activity was evaluated with the fluorescent substrate 7-benzyloxy-4-trifluoromethylcoumarin. Induction experiments were carried out with rifampicin, dexamethasone or phenobarbital. Concentration-response curves for induction with rifampicin were created. Williams' medium E showed the best results on morphology and viability of the hepatocytes and was therefore used for the following induction experiments. Cells cultured in Dulbecco's Modified Eagle Medium were not inducible. Incubation with rifampicin increased the CYP activity in two different hepatocyte preparations in a dose dependent manner (EC50=1.20 μM and 6.06 μM; Emax=4.1- and 3.4-fold induction). No increase in CYP activity was detected after incubation with dexamethasone or phenobarbital. The hepatocyte culture conditions established in this study proved to be valuable for investigation of the induction of equine CYPs. In further studies, other equine drugs can be evaluated for CYP induction with this in vitro system.
Resumo:
While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.
Resumo:
Background: Inflammation is implicated in the development of cancer related fatigue (CRF). However there is limited literature on the mediators of inflammation (namely), cytokines and their receptors, associated with clinically significant fatigue and response to treatment. Methods: We reviewed 37 advanced cancer patients with fatigue (≥4/10), who participated in two Randomized Controlled Trials, of anti-inflammatory agents (Thalidomide and Dexamethasone) for CRF. Responders showed improvement in FACIT-F subscale at the end of study (Day 15). Baseline patient characteristics and symptoms were assessed by FACIT-F, ESAS; serum cytokines [IL-1β and receptor antagonist (IL-1RA), IL-6, IL-6R, TNF-α and sTNF-R1 and R2, IL-8, IL-10, IL-17] levels measured by Luminex. Data were analyzed using principal component analysis (PCA) [reporting cumulative variance (variance) for the first four components] to determine their association with fatigue and response to treatment. Results: Females were 54%. Mean (SD) was as follows for age, 61(14); baseline FACIT (F) scores, 21.4(8.6); ESAS Fatigue item, 6.5(1.9); and FACIT-F change, 6.4(9.7); ESAS (fatigue) change, -2 (2.41). Baseline median in pg/mL for IL-6, TNF-α, IL-1β were 31.9; 18.9; 0.55, respectively. Change in IL-6 negatively correlated with change in FACIT-F scores (p=0.02). Baseline CRF (FACIT-F score) was associated with IL-6, IL-6R and IL-17, Variance = 78% whereas IL-10, IL-1RA, TNF-α and IL-1β were associated with improvement of CRF, Variance=74%. Conversely, IL-6 and IL-8 were associated with no improvement or worsening of CRF, Variance= 93%. Conclusions: Change in IL-6 negatively correlated with change in FACIT-F scores. IL-6, IL-6R and IL-17 are associated with CRF while IL-6 and IL-8 were associated with no improvement of CRF. Further studies are warranted confirm our findings.
Resumo:
During the process of cancer metastasis, the majority of circulating tumor cells arrest in microcapillary beds and then rapidly die. To study whether vascular endothelial cells can directly lyse tumor cells, we isolated vascular endothelial cells by perfusion of lungs from immunocompetent or nude mice. The cells were grown in culture, and then cloned and characterized. Cloned endothelial cells were incubated with several lymphokines and cytokines. Cells incubated with IFN-$\gamma$ and TNF lysed a variety of tumor cells with different metastatic potential. Mouse skin and lung fibroblasts treated with the same cytokines did not. Endothelial cell mediated tumor cell lysis was not due to different binding ability of tumor cells to cytokine treated and untreated endothelial monolayers. Kinetic studies demonstrated that the continuous presence of cytokines in the tumor-endothelial cocultures was necessary to produce maximal lysis of tumor cells. Target cell lysis was not due to the direct effects of IFN-$\gamma$ or TNF, since vascular endothelial cells isolated from the lung of nude mice lysed human melanoma cells that are sensitive or resistant to TNF. Cytokine treated endothelial cells produced a high level of nitric oxide, which is known to be cytotoxic to a variety of target cells. The level of nitric oxide production was directly correlated with the degree of tumor cell lysis. A specific inhibitor of nitric oxide synthesis(N$\sp{\rm G}$-monomethyl-L-arginine), completely inhibited production of nitric oxide and tumor cell lysis. Treatment of cytokine activated endothelial cells with dexamethasone also inhibited tumor cell lysis. This inhibition was independent of tumor-endothelial adhesion but correlated with inhibition of nitric oxide production. Collectively, these results suggest that vascular endothelial cells can directly destory tumor emboli and thus play an active role in the pathogenesis of cancer metastasis. ^
Resumo:
Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^