840 resultados para Destination branding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a fast algorithm for data exchange in a network of processors organized as a reconfigurable tree structure. For a given data exchange table, the algorithm generates a sequence of tree configurations in which the data exchanges are to be executed. A significant feature of the algorithm is that each exchange is executed in a tree configuration in which the source and destination nodes are adjacent to each other. It has been proved in a theorem that for every pair of nodes in the reconfigurable tree structure, there always exists two and only two configurations in which these two nodes are adjacent to each other. The algorithm utilizes this fact and determines the solution so as to optimize both the number of configurations required and the time to perform the data exchanges. Analysis of the algorithm shows that it has linear time complexity, and provides a large reduction in run-time as compared to a previously proposed algorithm. This is well-confirmed from the experimental results obtained by executing a large number of randomly-generated data exchange tables. Another significant feature of the algorithm is that the bit-size of the routing information code is always two bits, irrespective of the number of nodes in the tree. This not only increases the speed of the algorithm but also results in simpler hardware inside each node.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relay selection combined with buffering of packets of relays can substantially increase the throughput of a cooperative network that uses rateless codes. However, buffering also increases the end-to-end delays due to the additional queuing delays at the relay nodes. In this paper we propose a novel method that exploits a unique property of rateless codes that enables a receiver to decode a packet from non-contiguous and unordered portions of the received signal. In it, each relay, depending on its queue length, ignores its received coded bits with a given probability. We show that this substantially reduces the end-to-end delays while retaining almost all of the throughput gain achieved by buffering. In effect, the method increases the odds that the packet is first decoded by a relay with a smaller queue. Thus, the queuing load is balanced across the relays and traded off with transmission times. We derive explicit necessary and sufficient conditions for the stability of this system when the various channels undergo fading. Despite encountering analytically intractable G/GI/1 queues in our system, we also gain insights about the method by analyzing a similar system with a simpler model for the relay-to-destination transmission times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a robust design of MIMO-relay precoder and receive filter for the destination nodes in a non-regenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a single MIMO-relay node. The source and destination nodes are single antenna nodes, whereas the MIMO-relay node has multiple transmit and multiple receive antennas. The channel state information (CSI) available at the MIMO-relay node for precoding purpose is assumed to be imperfect. We assume that the norms of errors in CSI are upper-bounded, and the MIMO-relay node knows these bounds. We consider the robust design of the MIMO-relay precoder and receive filter based on the minimization of the total MIMO-relay transmit power with constraints on the mean square error (MSE) at the destination nodes. We show that this design problem can be solved by solving an alternating sequence of minimization and worst-case analysis problems. The minimization problem is formulated as a convex optimization problem that can be solved efficiently using interior-point methods. The worst-case analysis problem can be solved analytically using an approximation for the MSEs at the destination nodes. We demonstrate the robust performance of the proposed design through simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The half-duplex constraint, which mandates that a cooperative relay cannot transmit and receive simultaneously, considerably simplifies the demands made on the hardware and signal processing capabilities of a relay. However, the very inability of a relay to transmit and receive simultaneously leads to a potential under-utilization of time and bandwidth resources available to the system. We analyze the impact of the half-duplex constraint on the throughput of a cooperative relay system that uses rateless codes to harness spatial diversity and efficiently transmit information from a source to a destination. We derive closed-form expressions for the throughput of the system, and show that as the number of relays increases, the throughput approaches that of a system that uses more sophisticated full-duplex nodes. Thus, half-duplex nodes are well suited for cooperation using rateless codes despite the simplicity of both the cooperation protocol and the relays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose partial and full link reversal algorithms to bypass voids during geographic routing over duty-cycled wireless sensor networks. We propose a distributed approach that is oblivious to one-hop neighbor information. Upon termination of the algorithm, the resulting network is guaranteed to be destination-oriented. Further, to reduce the delays incurred under reactive link reversal, we propose the use of `pseudo-events', a preemptive link reversal strategy, that renders the network destination-oriented before the onset of a real event. A simulation study of the effectiveness of pseudo-events is also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme to apply the rate-1 real orthogonal designs (RODs) in relay networks with single real-symbol decodability of the symbols at the destination for any arbitrary number of relays is proposed. In the case where the relays do not have any information about the channel gains from the source to themselves, the best known distributed space time block codes (DSTBCs) for k relays with single real-symbol decodability offer an overall rate of complex symbols per channel use. The scheme proposed in this paper offers an overall rate of 2/2+k complex symbol per channel use, which is independent of the number of relays. Furthermore, in the scenario where the relays have partial channel information in the form of channel phase knowledge, the best known DSTBCs with single real-symbol decodability offer an overall rate of 1/3 complex symbols per channel use. In this paper, making use of RODs, a scheme which achieves the same overall rate of 1/3 complex symbols per channel use but with a decoding delay that is 50 percent of that of the best known DSTBCs, is presented. Simulation results of the symbol error rate performance for 10 relays, which show the superiority of the proposed scheme over the best known DSTBC for 10 relays with single real-symbol decodability, are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article explores issues and challenges in the field of education in nanoscience and technology with special emphasis with respect to India, where an expanding programme of research in nano science and technology is in place. The article does not concentrate on actual curricula that are needed in nano science and technology education course. Rather it focuses on the desirability of nanoscience and technology education at different levels of education and future prospect of students venturing into this within the economic and cultural milieu of India. We argue that care is needed in developing the education programme in India. However, the risk is worth taking as the education on nanoscience and technology can bridge the man power gap not only in this area of technology but also related technologies of hardware and micro electronics for which the country is a promising destination at global level. This will also unlock the demographical advantage that India will enjoy in the next five decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose and analyze a novel idea of performing interference cancellation (IC) in a distributed/cooperative manner, with a motivation to provide multiuser detection (MUD) benefit to nodes that have only a single user detection capability. In the proposed distributed interference cancellation (DIC) scheme, during phase-1 of transmission, an MUD capable cooperating relay node estimates all the sender nodes' bits through multistage interference cancellation. These estimated bits are then sent by the relay node on orthogonal tones in phase-2 of transmission. The destination nodes receive these bit estimates and use them for interference estimation/cancellation, thus achieving IC benefit in a distributed manner. For this DIC scheme, we analytically derive an exact expression for the bit error rate (BER) in a basic five-node network (two source-destination node pairs and a cooperating relay node) on AWGN channels. Analytical BER results are shown to match with simulation results. For more general system scenarios, including more than two source-destination pairs and fading channels without and with space-time coding, we present simulation results to establish the potential for improved performance in the proposed distributed approach to interference cancellation. We also present a linear version of the proposed DIC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider robust joint designs of relay precoder and destination receive filters in a nonregenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a MIMO-relay node. The channel state information (CSI) available at the relay node is assumed to be imperfect. We consider robust designs for two models of CSI error. The first model is a stochastic error (SE) model, where the probability distribution of the CSI error is Gaussian. This model is applicable when the imperfect CSI is mainly due to errors in channel estimation. For this model, we propose robust minimum sum mean square error (SMSE), MSE-balancing, and relay transmit power minimizing precoder designs. The next model for the CSI error is a norm-bounded error (NBE) model, where the CSI error can be specified by an uncertainty set. This model is applicable when the CSI error is dominated by quantization errors. In this case, we adopt a worst-case design approach. For this model, we propose a robust precoder design that minimizes total relay transmit power under constraints on MSEs at the destination nodes. We show that the proposed robust design problems can be reformulated as convex optimization problems that can be solved efficiently using interior-point methods. We demonstrate the robust performance of the proposed design through simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a cooperative relay-assisted communication system that uses rateless codes, packets get transmitted from a source to a destination at a rate that depends on instantaneous channel states of the wireless links between nodes. When multiple relays are present, the relay with the highest channel gain to the source is the first to successfully decode a packet from the source and forward it to the destination. Thus, the unique properties of rateless codes ensure that both rate adaptation and relay selection occur without the transmitting source or relays acquiring instantaneous channel knowledge. In this paper, we show that in such cooperative systems, buffering packets at relays significantly increases throughput. We develop a novel analysis of these systems that combines the communication-theoretic aspects of cooperation over fading channels with the queuing-theoretic aspects associated with buffering. Closed-form expressions are derived for the throughput and end-to-end delay for the general case in which the channels between various nodes are not statistically identical. Corresponding results are also derived for benchmark systems that either do not exploit spatial diversity or do not buffer packets. Altogether, our results show that buffering - a capability that will be commonly available in practical deployments of relays - amplifies the benefits of cooperation.