992 resultados para Depth Estimation
Resumo:
Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
RÉSUMÉ Introduction L'effet des agents myorelaxants ainsi que des anticholinestérases sur la profondeur d'anesthésie a été étudié avec des résultats contradictoires. C'est pourquoi nous avons évalué l'effet de l'atracurium et de la néostigmine sur le BIS (bispectral index) ainsi que sur les potentiels auditives évoqués (middle-latency auditory evoked potentials, A-Line® autoregressive index [AAI]). Méthodes Après avoir obtenu l'accord du comité d'éthique local, nous avons étudié 40 patients ayant donné leur consentement écrit, ASA I-II, âgé de 18-69 ans. L'anesthésie générale a consisté en anesthésie intra-veineuse à objectif de concentration avec du propofol et du remifentanil. La fonction de la jonction neuromusculaire était monitorée en continu au moyen d'un électromyographe. Le BIS et l'AAI ont été enregistrés en continu. Après avoir atteint des valeurs stables au niveau du BIS, les patients ont été attribués à deux groupes par randomisation. Les patients du groupe 1 ont reçu 0.4 mg kg-1 d'atracurium et 5 minutes plus tard le même volume de NaCI 0.9%, dans le groupe 2 la séquence d'injection était inversée, le NaCI 0.9% en premier et l'atracurium en deuxième. Au moment où le premier « twitch » d'un train de quatre atteignait 10% de l'intensité avant la relaxation, les patients ont été randomisés une deuxième fois. Les patients du groupe N ont reçu 0.04 mg kg-1 de néostigmine et 0.01 rn9 kg-1 de glycopyrrolate alors que le groupe contrôle (G) ne recevait que 0.01 mg kg-] de glycopyrrolate. Résultats : L 'injection d'atracurium ou de NaCI 0.9% n'a pas eu d'effet sur le BIS ou l'AAI. Après l'injection de néostigmine avec glycopyrrolate, le BIS et I `AAI a augmenté de manière significative (changement maximal moyen du BIS 7.1 ± 7.5, P< 0.001, de l'AAI 9.7 ± 10.5, P< 0.001). Suite à l'injection de glycopyrrolate seule, le BIS et l'AAI a augmenté également (changement maximal moyen du BIS 2.2 ± 3.4, P< 0.008, de l'AAI 3.5 ± 5.7, P< 0.012), mais cette augmentation était significativement moins importante que dans le groupe N (P< 0.012 pour le BIS, P< 0.027 pour l'AAI). Conclusion Ces résultats laissent supposer que la néostigmine peut altérer la profondeur de l'anesthésie. La diminution de la profondeur d'anesthésie enregistrée par le BIS et l'AAI correspond probablement à une réapparition brusque d'une stimulation centrale liée à la proprioception. Au contraire, lors de la curarisation, le tonus musculaire diminue de manière beaucoup plus progressive, pouvant ainsi expliquer l'absence d'effet sur la profondeur d'anesthésie. ABSTRACT Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group I received atracurium 0.4 mg kg-1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg-1 and glycopyrrolate 0.01 mg kg-1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine¬glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.
Resumo:
A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
The physical disector is a method of choice for estimating unbiased neuron numbers; nevertheless, calibration is needed to evaluate each counting method. The validity of this method can be assessed by comparing the estimated cell number with the true number determined by a direct counting method in serial sections. We reconstructed a 1/5 of rat lumbar dorsal root ganglia taken from two experimental conditions. From each ganglion, images of 200 adjacent semi-thin sections were used to reconstruct a volumetric dataset (stack of voxels). On these stacks the number of sensory neurons was estimated and counted respectively by physical disector and direct counting methods. Also, using the coordinates of nuclei from the direct counting, we simulate, by a Matlab program, disector pairs separated by increasing distances in a ganglion model. The comparison between the results of these approaches clearly demonstrates that the physical disector method provides a valid and reliable estimate of the number of sensory neurons only when the distance between the consecutive disector pairs is 60 microm or smaller. In these conditions the size of error between the results of physical disector and direct counting does not exceed 6%. In contrast when the distance between two pairs is larger than 60 microm (70-200 microm) the size of error increases rapidly to 27%. We conclude that the physical dissector method provides a reliable estimate of the number of rat sensory neurons only when the separating distance between the consecutive dissector pairs is no larger than 60 microm.
Resumo:
Les précipitations journalières extrêmes centennales ont été estimées à partir d'analyses de Gumbel et de sept formule empiriques effectuées sur des séries de mesures pluviométriques à 151 endroits de la Suisse pour deux périodes de 50 ans. Ces estimations ont été comparées avec les valeurs journalières maximales mesurées durant les 100 dernières années (1911-2010) afin de tester l'efficacité de ces sept formules. Cette comparaison révèle que la formule de Weibull serait la meilleure pour estimer les précipitations journalières centennales à partir de la série de mesures pluviométriques 1961-2010, mais la moins bonne pour la série de mesures 1911-1960. La formule de Hazen serait la plus efficace pour cette dernière période. Ces différences de performances entre les formules empiriques pour les deux périodes étudiées résultent de l'augmentation des précipitations journalières maximales mesurées de 1911 à 2010 pour 90% des stations en Suisse. Mais les différences entre les pluies extrêmes estimées à partir des sept formules empiriques ne dépassent pas 6% en moyenne.
Resumo:
Captan and folpet are two fungicides largely used in agriculture, but biomonitoring data are mostly limited to measurements of captan metabolite concentrations in spot urine samples of workers, which complicate interpretation of results in terms of internal dose estimation, daily variations according to tasks performed, and most plausible routes of exposure. This study aimed at performing repeated biological measurements of exposure to captan and folpet in field workers (i) to better assess internal dose along with main routes-of-entry according to tasks and (ii) to establish most appropriate sampling and analysis strategies. The detailed urinary excretion time courses of specific and non-specific biomarkers of exposure to captan and folpet were established in tree farmers (n = 2) and grape growers (n = 3) over a typical workweek (seven consecutive days), including spraying and harvest activities. The impact of the expression of urinary measurements [excretion rate values adjusted or not for creatinine or cumulative amounts over given time periods (8, 12, and 24 h)] was evaluated. Absorbed doses and main routes-of-entry were then estimated from the 24-h cumulative urinary amounts through the use of a kinetic model. The time courses showed that exposure levels were higher during spraying than harvest activities. Model simulations also suggest a limited absorption in the studied workers and an exposure mostly through the dermal route. It further pointed out the advantage of expressing biomarker values in terms of body weight-adjusted amounts in repeated 24-h urine collections as compared to concentrations or excretion rates in spot samples, without the necessity for creatinine corrections.
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).
Resumo:
The knowledge of the relationship that links radiation dose and image quality is a prerequisite to any optimization of medical diagnostic radiology. Image quality depends, on the one hand, on the physical parameters such as contrast, resolution, and noise, and on the other hand, on characteristics of the observer that assesses the image. While the role of contrast and resolution is precisely defined and recognized, the influence of image noise is not yet fully understood. Its measurement is often based on imaging uniform test objects, even though real images contain anatomical backgrounds whose statistical nature is much different from test objects used to assess system noise. The goal of this study was to demonstrate the importance of variations in background anatomy by quantifying its effect on a series of detection tasks. Several types of mammographic backgrounds and signals were examined by psychophysical experiments in a two-alternative forced-choice detection task. According to hypotheses concerning the strategy used by the human observers, their signal to noise ratio was determined. This variable was also computed for a mathematical model based on the statistical decision theory. By comparing theoretical model and experimental results, the way that anatomical structure is perceived has been analyzed. Experiments showed that the observer's behavior was highly dependent upon both system noise and the anatomical background. The anatomy partly acts as a signal recognizable as such and partly as a pure noise that disturbs the detection process. This dual nature of the anatomy is quantified. It is shown that its effect varies according to its amplitude and the profile of the object being detected. The importance of the noisy part of the anatomy is, in some situations, much greater than the system noise. Hence, reducing the system noise by increasing the dose will not improve task performance. This observation indicates that the tradeoff between dose and image quality might be optimized by accepting a higher system noise. This could lead to a better resolution, more contrast, or less dose.
Resumo:
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.
Resumo:
Abstract