887 resultados para Deficit targets
Resumo:
In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn
Resumo:
It is well known that ageing and cancer have common origins due to internal and environmental stress and share some common hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury. Moreover, ageing is involved in a number of events responsible for carcinogenesis and cancer development at the molecular, cellular, and tissue levels. Ageing could represent a “blockbuster” market because the target patient group includes potentially every person; at the same time, oncology has become the largest therapeutic area in the pharmaceutical industry in terms of the number of projects, clinical trials and research and development (R&D) spending, but cancer remains one of the leading causes of mortality worldwide. The overall aim of the work presented in this thesis was the rational design of new compounds able to modulate activity of relevant targets involved in cancer and aging-related pathologies, namely proteasome and immunoproteasome, sirtuins and interleukin 6. These three targets play different roles in human cells, but the modulation of its activity using small molecules could have beneficial effects on one or more aging-related diseases and cancer. We identified new moderately active and selective non-peptidic compounds able to inhibit the activity of both standard and immunoproteasome, as well as novel and selective scaffolds that would bind and inhibit SIRT6 selectively and can be used to sensitize tumor cells to commonly used anticancer agents such gemcitabine and olaparib. Moreover, our virtual screening approach led us also to the discovery of new putative modulators of SIRT3 with interesting in-vitro and cellular activity. Although the selectivity and potency of the identified chemical scaffolds are susceptible to be further improved, these compounds can be considered as highly promising leads for the development of future therapeutics.
Resumo:
Alexithymia refers to difficulties in recognizing one’s own emotions and others emotions. Theories of emotional embodiment suggest that, in order to understand other peoples’ feelings, observers re-experience, or simulate, the relevant component (i.e. somatic, motor, visceral) of emotion’s expressed by others in one’s self. In this way, the emotions are “embodied”. Critically, to date, there are no studies investigating the ability of alexithymic individuals in embodying the emotions conveyed by faces. In the present dissertation different implicit paradigms and techniques falling within the field of affective neuroscience have been employed in order to test a possible deficit in the embodiment of emotions in alexithymia while subjects were requested to observe faces manifesting different expression: fear, disgust, happiness and neutral. The level of the perceptual encoding of emotional faces and the embodiment of emotions in the somato-sensory and sensory-motor system have been investigated. Moreover, non-communicative motor reaction to emotional stimuli (i.e. visceral reactions) and interoceptive abilities of alexithymic subjects have been explored. The present dissertation provided convergent evidences in support of a deficit in the processing of fearful expression in subjects with high alexithymic personality traits. Indeed, the pattern of fear induced changes in the perceptual encoding, in the somato-sensory and in the somato-motor system (both the communicative and non communicative one) is widely and consistently altered in alexithymia. This support the hypothesis of a diminished responses to fearful stimuli in alexithymia. In addition, the overall results on happiness and disgust, although preliminary, provided interesting results. Indeed, the results on happiness revealed a defective perceptual encoding, coupled with a slight difficulty (i.e. delayed responses) at the level of the communicative somato-motor system, and the emotion of disgust has been found to be abnormally embodied at the level of the somato-sensory system.
Resumo:
In this thesis is described the design and synthesis of potential agents for the treatment of the multifactorial Alzheimer’s disease (AD). Our multi-target approach was to consider cannabinoid system involved in AD, together with classic targets. In the first project, designed modifications were performed on lead molecule in order to increase potency and obtain balanced activities on fatty acid amide hydrolase and cholinesterases. A small library of compounds was synthesized and biological results showed increased inhibitory activity (nanomolar range) related to selected target. The second project was focused on the benzofuran framework, a privileged structure being a common moiety found in many biologically active natural products and therapeutics. Hybrid molecules were designed and synthesized, focusing on the inhibition of cholinesterases, Aβ aggregation, FAAH and on the interaction with CB receptors. Preliminary results showed that several compounds are potent CB ligands, in particular the high affinity for CB2 receptors, could open new opportunities to modulate neuroinflammation. The third and the fourth project were carried out at the IMS, Aberdeen, under the supervision of Prof. Matteo Zanda. The role of the cannabinoid system in the brain is still largely unexplored and the relationship between the CB1 receptors functional modification, density and distribution and the onset of a pathological state is not well understood. For this reasons, Rimonabant analogues suitable as radioligands were synthesized. The latter, through PET, could provide reliable measurements of density and distribution of CB1 receptors in the brain. In the fifth project, in collaboration with CHyM of York, the goal was to develop arginine analogues that are target specific due to their exclusively location into NOS enzymes and could work as MRI contrasting agents. Synthesized analogues could be suitable substrate for the transfer of polarization by p-H2 molecules through SABRE technique transforming MRI a more sensitive and faster technique.
Resumo:
Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca(2+) and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.
Resumo:
In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn
Resumo:
Partendo da uno studio preliminare riguardante le specifiche di progetto, è stato sviluppato un dispositivo di supporto statico atto all’ausilio di persone con deficit all’arto superiore. Il dispositivo è stato pensato per permettere il bloccaggio (sul piano o nello spazio) di una determinata categoria di oggetti, in modo da rendere possibile ai soggetti ai quali è indirizzato tutta una serie di mansioni, per loro altrimenti impossibili o comunque molto difficili da svolgere. Il dispositivo, completo di ogni sua parte, è stato disegnato al CAD, ne è stato spiegato il funzionamento qualitativo ed è stato sviluppato un modello matematico grazie al quale è possibile il calcolo di alcune variabili in gioco, in particolare del valore delle costanti elastiche delle molle presenti.
Resumo:
La presente tesi di laurea verte sulla traduzione dall'italiano al francese della presentazione multimediale (centoquattro diapositive power point) dal titolo “ADHD – Il Disturbo da Deficit di Attenzione ed Iperattività”. Nello specifico, tale presentazione, redatta dagli operatori preposti dell'Unità Operativa di Neuropsichiatria dell’Infanzia e dell’Adolescenza degli “Spedali Civili di Brescia”, costituisce una sorta di supporto informativo e breve guida al comportamento per i docenti che si relazionano con studenti affetti da ADHD. La mia scelta è stata dettata da un interesse per la materia, ma anche da aspetti rilevanti dal punto di vista traduttivo, quali la tipologia del testo di partenza e la traduzione attiva. Il testo di partenza è, infatti, di tipo misto, a metà tra tecnico/scientifico, istruttivo e divulgativo, e presenta una struttura adeguata al genere di supporto utilizzato, vale a dire un supporto multimediale. Alle problematicità sul piano testuale sono, infine, da aggiungere quelle in ambito terminologico, essendo la traduzione attiva una sfida notevole qualunque sia l'argomento affrontato. L’elaborato si compone di cinque capitoli. Il primo capitolo funge da introduzione alla presentazione originale, fornendo una base teorica relativa alle lingue speciali e al linguaggio della divulgazione scientifica. Il secondo capitolo è costituito dalla presentazione multimediale in lingua originale. Oggetto del terzo capitolo è, invece, l'analisi macro e microlinguistica del testo di partenza. Il quarto e il quinto capitolo rappresentano il fulcro della mia tesi proponendo rispettivamente la traduzione in lingua francese della presentazione powerpoint, dal titolo “TDAH – Le Trouble du Déficit de l'Attention avec Hyperactivité”, e il commento alla traduzione. Il quinto capitolo, più nel dettaglio, si focalizza sulla metodologia adottata nel corso della stesura dell'elaborato, sulle strategie traduttive di cui mi sono servita per redigere la traduzione e sui problemi riscontrati. Infine, il capitolo conclusivo riprende i punti cardine del mio lavoro in una valutazione a posteriori.
Resumo:
There is conflicting evidence whether Parkinson's disease (PD) is associated with impaired recognition memory and which of its underlying processes, namely recollection and familiarity, is more affected by the disease. The present study explored the contribution of recollection and familiarity to verbal recognition memory performance in 14 nondemented PD patients and a healthy control group with two different methods: (i) the word-frequency mirror effect, and (ii) Remember/Know judgments. Overall, recognition memory of patients was intact. The word-frequency mirror effect was observed both in patients and controls: Hit rates were higher and false alarm rates were lower for low-frequency compared to high-frequency words. However, Remember/Know judgments indicated normal recollection, but impaired familiarity. Our findings suggest that mild to moderate PD patients are selectively impaired at familiarity whereas recollection and overall recognition memory are intact.
Resumo:
We present the case of a 48-year old man who, eight years after an industrial accident, presents with chronic right-sided nondermatomal pain and hypaesthesia to heat and touch. During symmetric peripheral touch functional magnetic resonance imaging revealed hypometabolism in the left thalamus, somatosensory cortex, and anterior cingulate cortex. Pain-associated nondermatomal somatosensory deficits (NDSDs) localizing to one side of the body are a frequent clinical entity, which are often triggered by an accident. The tendency of NDSDs to extend to adjunct ipsilateral body parts and to become chronic points to maladaptive adjustment of pain-processing areas in the central nervous system. Psychological stress prior to or around the triggering event seems an important risk factor for NDSDs.
Resumo:
The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.
Resumo:
In contrast to studies of depression and psychosis, the first part of this study showed no major differences in serum levels of cytokines and tryptophan metabolites between healthy children and those with attention-deficit/hyperactivity disorder of the combined type (ADHD). Yet, small decreases of potentially toxic kynurenine metabolites and increases of cytokines were evident in subgroups. Therefore we examined predictions of biochemical associations with the major symptom clusters, measures of attention and response variability.
Resumo:
Children with attention-deficit/hyperactivity disorder (ADHD) show a marked temporal variability in their display of symptoms and neuropsychological performance. This could be explained in terms of an impaired glial supply of energy to support neuronal activity.
Resumo:
Attention-deficit hyperactivity disorder (ADHD) is associated with a range of cognitive deficits and social cognition impairments, which might be interpreted in the context of fronto-striatal dysfunction. So far only few studies have addressed the issue of social cognition deficits in ADHD.