950 resultados para DRUG-INDUCED APOPTOSIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.

By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.

To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.

In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breast cancer is the most frequently diagnosed cancer in women, accounting for over 25% of cancer diagnoses and 13% of cancer-related deaths in Canadian women. There are many types of therapies for treatment or management of breast cancer, with chemotherapy being one of the most widely used. Taxol (paclitaxel) is one of the most extensively used chemotherapeutic agents for treating cancers of the breast and numerous other sites. Taxol stabilizes microtubules during mitosis, causing the cell cycle to arrest until eventually the cell undergoes apoptosis. Although Taxol has had significant benefits in many patients, response rates range from only 25-69%, and over half of Taxol-treated patients eventually acquire resistance to the drug. Drug resistance remains one of the greatest barriers to effective cancer treatment, yet little has been discerned regarding resistance to Taxol, despite its widespread clinical use. Kinases are known to be heavily involved in cancer development and progression, and several kinases have been linked to resistance of Taxol and other chemotherapeutic agents. However, a systematic screen for kinases regulating Taxol resistance is lacking. Thus, in this study, a set of kinome-wide screens was conducted to interrogate the involvement of kinases in the Taxol response. Positive-selection and negative-selection CRISPR-Cas9 screens were conducted, whereby a pooled library of 5070 sgRNAs targeted 507 kinase-encoding genes in MCF-7 breast cancer cells that were Taxol-sensitive (WT) or Taxol-resistant (TxR) which were then treated with Taxol. Next generation sequencing (NGS) was performed on cells that survived Taxol treatment, allowing identification and quantitation of sgRNAs. STK38, Blk, FASTK and Nek3 stand out as potentially critical kinases for Taxol-induced apoptosis to occur. Furthermore, kinases CDKL1 and FRK may have a role in Taxol resistance. Further validation of these candidate kinases will provide novel pre-clinical data about potential predictive biomarkers or therapeutic targets for breast cancer patients in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of chemical control measures to reduce the impact of parasite and pest species has frequently resulted in the development of resistance. Thus, resistance management has become a key concern in human and veterinary medicine, and in agricultural production. Although it is known that factors such as gene flow between susceptible and resistant populations, drug type, application methods, and costs of resistance can affect the rate of resistance evolution, less is known about the impacts of density-dependent eco-evolutionary processes that could be altered by drug-induced mortality. The overall aim of this thesis was to take an experimental evolution approach to assess how life history traits respond to drug selection, using a free-living dioecious worm (Caenorhabditis remanei) as a model. In Chapter 2, I defined the relationship between C. remanei survival and Ivermectin dose over a range of concentrations, in order to control the intensity of selection used in the selection experiment described in Chapter 4. The dose-response data were also used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) model selection to compare a series of nonlinear models. The type of model fitted to the dose response data had a significant effect on the estimates of LD50 and LD99, suggesting that failure to fit an appropriate model could give misleading estimates of resistance status. In addition, simulated data were used to establish that a potential cost of resistance could be predicted by comparing survival at the upper asymptote of dose-response curves for resistant and susceptible populations, even when differences were as low as 4%. This approach to dose-response modeling ensures that the maximum amount of useful information relating to resistance is gathered in one study. In Chapter 3, I asked how simulations could be used to inform important design choices used in selection experiments. Specifically, I focused on the effects of both within- and between-line variation on estimated power, when detecting small, medium and large effect sizes. Using mixed-effect models on simulated data, I demonstrated that commonly used designs with realistic levels of variation could be underpowered for substantial effect sizes. Thus, use of simulation-based power analysis provides an effective way to avoid under or overpowering a study designs incorporating variation due to random effects. In Chapter 4, I 3 investigated how Ivermectin dosage and changes in population density affect the rate of resistance evolution. I exposed replicate lines of C. remanei to two doses of Ivermectin (high and low) to assess relative survival of lines selected in drug-treated environments compared to untreated controls over 10 generations. Additionally, I maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug treatment versus ecological processes affected by changes in density-dependent feedback. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. The results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures, which could result in misleading conclusions about the evolution of heritable resistance following drug treatment. In Chapter 5, I investigated whether the apparent changes in drug susceptibility found in Chapter 4 were related to evolved changes in life-history of C. remanei populations after selection in drug-treated and random-mortality environments. Rapid passage of lines in the drug-free environment had no effect on the measured life-history traits. In the drug-free environment, adult size and fecundity of drug-selected lines increased compared to the controls but drug selection did not affect lifespan. In the treated environment, drug-selected lines showed increased lifespan and fecundity relative to controls. Adult size of randomly culled lines responded in a similar way to drug-selected lines in the drug-free environment, but no change in fecundity or lifespan was observed in either environment. The results suggest that life histories of nematodes can respond to selection as a result of the application of control measures. Failure to take these responses into account when applying control measures could result in adverse outcomes, such as larger and more fecund parasites, as well as over-estimation of the development of genetically controlled resistance. In conclusion, my thesis shows that there may be a complex relationship between drug selection, density-dependent regulatory processes and life history of populations challenged with control measures. This relationship could have implications for how resistance is monitored and managed if life histories of parasitic species show such eco-evolutionary responses to drug application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current work aimed to study the antitumour activity of a phenolic extract of the edible mushroom Leccinum vulpinum Watling, rich essentially in hydroxybenzoic acids. In a first approach, the mushroom extract was tested against cancer cell growth by using four human tumour cell lines. Given the positive results obtained in these initial screening experiments and the evidence of some studies for an inverse relationship between mushroom consumption and breast cancer risk, a detailed study of the bioactivity of the extract was carried out on MCF-7 cells. Once the selected cell line to precede the work was the breast adenocarcinoma cell line, the human breast non-malignant cell line MCF-10A was used as control. Overall, the extract decreased cellular proliferation and induced apoptosis. Furthermore, the results also suggest that the extract causes cellular DNA damage. Data obtained highlight the potential of mushrooms as a source of biologically active compounds, particularly with antitumour activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H2O2 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. Material and methods: To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Results: Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 µM) shows a clear apoptosis when treated with H2O2 150 µM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). Conclusion: The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemotherapeutic drugs can in many ways disrupt the replication machinery triggering apoptosis in cancer cells: some act directly on DNA and others block the enzymes involved in preparing DNA for replication. Cisplatin-based drugs are common as first-line cancer chemotherapics. Another example is etoposide, a molecule that blocks topoisomerase II α leading to the inhibition of dsDNA replication. Despite their efficacy, cancer cells can respond to these treatments over time by overtaking their effects, leading to drug resistance. Chemoresistance events can be triggered by the action of enzymes like DNA polymerase ƞ (Pol η). This polymerase helps also to bypass drug-induced damage in cancer cells, allowing DNA replication and cancer cells proliferation even when cisplatin-based chemotherapeutic drugs are in use. Pol ƞ is a promising drug discovery target, whose inhibition would help in overcoming of drug resistance. This study aims to identify a potent and selective Pol ƞ inhibitor able to improve the efficacy of platinum-based chemotherapeutic drugs. We report the discovery of compound 64 (ARN24964), after an extensive SAR reporting 35 analogs. We evaluated compound 64 on four different cell lines. Interestingly, the molecule is a Pol η inhibitor able to act synergistically with cisplatin. Moreover, we also synthesized a prodrug form that allowed us to improve its stability and the bioavailability. This compound represents an advanced scaffold featuring good potency and DMPK properties. In addition to this central theme, this thesis also describes our efforts in developing and characterize a novel hybrid inhibitor/poison for the human topoisomerase II α enzyme. In particular, we performed specific assays to study the inhibiton of Topoisomesare II α and we evaluated compounds effect on three cancer cell lines. These studies allowed us to identify a compound that is able to inhibit the enzyme with a good pK and a good potency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism underlying castration-induced prostate regression, which is a classical physiological concept translated into the therapeutic treatment of advanced prostate cancer, involves epithelial cell apoptosis. In searching for events and mechanisms contributing to prostate regression in response to androgen modulation, we have frequently observed the collective deletion of epithelial cells. This work was undertaken to characterize this phenomenon hereafter named desquamation and to verify its presence after 17β-estradiol (E2) administration. Electron microscopy revealed that the desquamating cells had preserved cell-cell junctions and collapsed nuclear contents. The TUNEL reaction was negative for these cells, which were also negative for cleaved caspases-8, -9, -3 and nuclear apoptosis-inducing factor. Detailed analyses revealed that the condensed chromatin was first affected detaching from the nuclear lamina, which was observable after lamin A immunohistochemistry, suggesting the lack of lamin A degradation. A search in animals treated with supraphysiological E2 employed as an alternative anti-androgen treatment revealed no desquamation. The combined treatment (Cas + E2 group) caused changes particular to each treatment, including desquamation. In conclusion, desquamation appeared as a novel phenomenon contributing to collective prostate epithelial cell deletion, distinct from the classical castration-induced apoptosis and particular to the androgen deprivation resulting from surgical castration, and should be considered as part of the mechanisms promoting organ regression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression. Methods: The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells. Results: We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (ARID4A, CALR, GNB2L1, RNF10, SQSTM1, USP9X) were validated by real time PCR. Conclusions: A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly active antiretroviral therapy (HAART) has dramatically decreased opportunistic infections (OIs) in human immunodeficiency virus (HIV)-infected patients. However, gastrointestinal disease continues to account for a high proportion of presenting symptoms in these patients. Gastrointestinal symptoms in treated patients who respond to therapy are more likely to the result of drug-induced complications than OI. Endoscopi evaluation of the gastrointestinal tract remains a cornerstone of diagnosis, especially in patients with advanced immunodeficiency, who are at risk for OI. The peripheral blood CD4 lymphocyte count helps to predict the risk of an OI, with the highest risk seen in HIV-infected patients with low CD4 count (< 200 cells/mm(3)). This review provides an update of the role of endoscopy in diagnosing OI in the upper gastrointestinal tract in HIV-infected patients in the era of HAART. (C) 2009 The WJG Press and Baishideng. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours. Methods: In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-kappa B activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts. Results: We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: KLK7 (kallikrein 7), SOD2 (superoxide dismutase 2), 100P (S100 calcium binding protein P), PI3 (protease inhibitor 3, skin-derived), CSTA (cystatin A), RARRES1 (retinoic acid receptor responder 1), and LXN (latexin). The differential expression of the KLK7 and SOD2 transcripts was confirmed by Northern blot. Moreover, we observed that SOD2 expression correlates with the differential NF-kappa B activation exhibited by TNF-sensitive and TNF-resistant cells. Conclusion: This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 mu M) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells. (C) 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.