764 resultados para DEUTERIUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The European Project for Ice Coring in Antarctica (EPICA) focuses on the drilling of two deep ice cores, the first at Dome C and the second at Kohnen station (75°00' S, 0°04' E) in Dronning Maud Land (DML). This paper deals with stable-isotope records from ice cores drilled in DML. In the first season, the deep EPICA DML core reached a depth of 450 m, recovering ice approximately 7000 years old. Generally, the d18O record indicates a stable Holocene climate and shows low variability. However, during the last 4000 years (based on a preliminary time-scale) the d18O values decrease continuously by about 0.6%, and the deuterium excess values increase by about 0.5%. The correlation between d18O and the deuterium excess d is investigated for a 50m long core section and the near-surface snow. High-pass filtered profiles are positively correlated, whereas the correlation between low-pass filtered profiles is negative. A post-depositional effect due to diffusion processes can be seen in a sub-annually resolved profile from snow-pit samples. Changes in the seasonality of the evolution of the snow cover and the consequences for stable-isotope content are demonstrated with data from ice core B31.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bottom-simulating reflectors were observed beneath the southeastern slope of the Dongsha Islands in the South China Sea, raising the potential for the presence of gas hydrate in the area. We have analyzed the chemical and isotopic compositions of interstitial water, headspace gas, and authigenic siderite concretions from Site 1146. Geochemical anomalies, including a slight decrease of chlorine concentration in interstitial water, substantial increase of methane concentration in headspace gas, and 18O enrichment in the authigenic siderite concretion below 400 meters below seafloor are probably caused by the decomposition of gas hydrate. The low-chlorine pore fluids contain higher molecular-weight hydrocarbons and probably migrate to Site 1146 along faults or bedded planes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 32l, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of <25°C. Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantly oxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from a nonoxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater. Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of surface seawater is widely used to infer past changes in sea surface salinity using paired foraminiferal Mg/Ca and d18O from marine sediments. At low latitudes, paleosalinity reconstructions using this method have largely been used to document changes in the hydrological cycle. This method usually assumes that the modern seawater d18O (d18Osw)/salinity relationship remained constant through time. Modelling studies have shown that such assumptions may not be valid because large-scale atmospheric circulation patterns linked to global climate changes can alter the seawater d18Osw/salinity relationship locally. Such processes have not been evidenced by paleo-data so far because there is presently no way to reconstruct past changes in the seawater d18Osw/salinity relationship. We have addressed this issue by applying a multi-proxy salinity reconstruction from a marine sediment core collected in the Gulf of Guinea. We measured hydrogen isotopes in C37:2 alkenones (dDa) to estimate changes in seawater dD. We find a smooth, long-term increase of ~10 per mil in dDa between 10 and 3 kyr BP, followed by a rapid decrease of ~10 per mil in dDa between 3 kyr BP and core top to values slightly lighter than during the early Holocene. Those features are inconsistent with published salinity estimations based on d18Osw and foraminiferal Ba/Ca, as well as nearby continental rainfall history derived from pollen analysis. We combined dDa and d18Osw values to reconstruct a Holocene record of salinity and compared it to a Ba/Ca-derived salinity record from the same sedimentary sequence. This combined method provides salinity trends that are in better agreement with both the Ba/Ca-derived salinity and the regional precipitation changes as inferred from pollen records. Our results illustrate that changes in atmospheric circulation can trigger changes in precipitation isotopes in a counter-intuitive manner that ultimately impacts surface salinity estimates based on seawater isotopic values. Our data suggest that the trends in Holocene rainfall isotopic values at low latitudes may not uniquely result from changes in local precipitation associated with the amount effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10**4 cells cm**-3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated CO2 degassing and related carbon isotope fractionation effects in the Wiesent River that drains a catchment in the karst terrain of the Fraconian Alb, Southern Germany. The river was investigated by physico-chemical and stable isotope analyses of water and dissolved inorganic carbon during all seasons in 2010 along 65 km long downstream transects between source and mouth. This data set contains the results of field and solute parameters (temperature, conductivity, pH, total alkalinity, total CO2, and pCO2) and stable isotope analyses (d2H-H2O, d18O-H2O, d13C-DIC) for the Wiesent River and major tributaries.