940 resultados para Convex infinite programming
Resumo:
In this paper the architecture of an experimental multiparadigmatic programming environment is sketched, showing how its parts combine together with application modules in order to perform the integration of program modules written in different programming languages and paradigms. Adaptive automata are special self-modifying formal state machines used as a design and implementation tool in the representation of complex systems. Adaptive automata have been proven to have the same formal power as Turing Machines. Therefore, at least in theory, arbitrarily complex systems may be modeled with adaptive automata. The present work briefly introduces such formal tool and presents case studies showing how to use them in two very different situations: the first one, in the name management module of a multi-paradigmatic and multi-language programming environment, and the second one, in an application program implementing an adaptive automaton that accepts a context-sensitive language.
Resumo:
Araújo, Páscoa and Torres-Martinez (2002) have shown that, without imposing either debt constraints or transversality conditions, Ponzi schemes are ruled out in infinite horizon economies with default when collateral is the only mechanism that partially secures loans. Páscoa and Seghir (2008) subsequently show that Ponzi schemes may reappear if, additionally to the seizure of the collateral, there are sufficiently harsh default penalties assessed (directly in terms of utility) against the defaulters. They also claim that if default penalties are moderate then Ponzi schemes are ruled out and existence of a competitive equilibrium is ensured. The objective of this paper is two fold. First, contrary to what is claimed by Páscoa and Seghir (2008), we show that moderate default penalties do not always prevent agents to run a Ponzi scheme. Second, we provide an alternative condition on default penalties that is sufficient to rule out Ponzi schemes and ensure the existence of a competitive equilibrium.
Resumo:
Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).
Resumo:
Araujo, Páscoa and Torres-Martínez (2002) showed that, without imposing any debt constraint, Ponzi schemes are ruled out in infinite horizon economies with limited commitment when collateral is the only mechanism that partially secures loans. Páscoa and Seghir (2009) presented two examples in which they argued that Ponzi schemes may reappear if, additionally to the seizure of the collateral, there are sufficiently harsh default penalties assessed (directly in terms of utility) against the defaulters. Moreover, they claimed that if default penalties are moderate then Ponzi schemes are ruled out and existence of a competitive equilibrium is restored. This paper questions the validity of the claims made in Páscoa and Seghir (2009). First, we show that it is not true that harsh default penalties lead to Ponzi schemes in the examples they have proposed. A competitive equilibrium with no trade can be supported due to unduly pessimistic expectations on asset deliveries. We subsequently refine the equilibrium concept in the spirit of Dubey, Geanakoplos and Shubik (2005) in order to rule out spurious inactivity on asset markets due to irrational expectations. Our second contribution is to provide a specific example of an economy with moderate default penalties in which Ponzi schemes reappear when overpessimistic beliefs on asset deliveries are ruled out. Our finding shows that, contrary to what is claimed by Páscoa and Seghir (2009), moderate default penalties do not always prevent agents to run a Ponzi scheme.
Resumo:
In this paper I will investigate the conditions under which a convex capacity (or a non-additive probability which exhibts uncertainty aversion) can be represented as a squeeze of a(n) (additive) probability measure associate to an uncertainty aversion function. Then I will present two alternatives forrnulations of the Choquet integral (and I will extend these forrnulations to the Choquet expected utility) in a parametric approach that will enable me to do comparative static exercises over the uncertainty aversion function in an easy way.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.
Resumo:
A new device was developed to hold linear transducers for transvaginal follicle aspiration. Efficacy of follicle aspiration was compared using a linear 6 MHz and a convex 5 MHz transducer. Fifty-five cows were submitted to follicle aspiration at random days of the estrous cycle. Aspirations were conducted with linear (n = 28) and convex (n = 38) transducers with 18 G needles at a negative pressure corresponding to 13 ml H2O/min. A greater number of follicles were aspirated using convex than to linear probe (12.4 versus 7.8, respectively, P < 0.05). Mean number of oocytes and recovery rates were similar for convex (5.4 and 48.6%) and linear (4.6 and 59.3%) transducers. Limited space between the linear transducer and needle guide restricted access to some portions of the ovary, reducing the number of follicles aspirated using a linear transducer. The newly developed adaptor allowed greater stability, holding the ovaries firmly against the linear transducer. This diminished mobility permitted a similar number of oocytes to be recovered with both transducers. In conclusion, this new adaptor provided a low cost alternative for routine follicle aspiration and oocyte recovery in cattle. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.