876 resultados para Convex Functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soit $\displaystyle P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré $n$ et $\displaystyle M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain with its highly complex structure made up of simple units,imterconnected information pathways and specialized functions has always been an object of mystery and sceintific fascination for physiologists,neuroscientists and lately to mathematicians and physicists. The stream of biophysicists are engaged in building the bridge between the biological and physical sciences guided by a conviction that natural scenarios that appear extraordinarily complex may be tackled by application of principles from the realm of physical sciences. In a similar vein, this report aims to describe how nerve cells execute transmission of signals ,how these are put together and how out of this integration higher functions emerge and get reflected in the electrical signals that are produced in the brain.Viewing the E E G Signal through the looking glass of nonlinear theory, the dynamics of the underlying complex system-the brain ,is inferred and significant implications of the findings are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Statistics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of convex extendability is introduced to answer the problem of finding the smallest distance convex simple graph containing a given tree. A problem of similar type with respect to minimal path convexity is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes JERIM-320, a new 320-bit hash function used for ensuring message integrity and details a comparison with popular hash functions of similar design. JERIM-320 and FORK -256 operate on four parallel lines of message processing while RIPEMD-320 operates on two parallel lines. Popular hash functions like MD5 and SHA-1 use serial successive iteration for designing compression functions and hence are less secure. The parallel branches help JERIM-320 to achieve higher level of security using multiple iterations and processing on the message blocks. The focus of this work is to prove the ability of JERIM 320 in ensuring the integrity of messages to a higher degree to suit the fast growing internet applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.