963 resultados para Continuum : Galaxies
Resumo:
We present new measurements of the luminosity function (LF) of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17 < z < 0.24) and 1725 2SLAQ LRGs (with 0.5 < z < 0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M-0.2r - 5 log h(0.7) = - 22.5, which are 2.51 +/- 0.03 x 10(-7) L circle dot Mpc(-3) and 2.44 +/- 0.15 x 10(-7) L circle dot Mpc(-3), respectively (< 10 per cent uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M-0.2r - 5 log h(0.7) = - 21 ( or brighter than similar to L-*).. We test our SDSS and 2SLAQ LFs against a simple 'dry merger' model for the evolution of massive red galaxies and find that at least half of the LRGs at z similar or equal to 0.2 must already have been well assembled (with more than half their stellar mass) by z similar or equal to 0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.
Resumo:
We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in H I selected galaxies. The survey consists of H alpha and R-band imaging of a sample of 468 galaxies selected from the H I Parkes All Sky Survey (HIPASS). The sample spans three decades in H I mass and is free of many of the biases that affect other star-forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single emission line galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H alpha, indicating that dormant (non-star-forming) galaxies with M-H I greater than or similar to 3x10(7) M-circle dot are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans 4 orders of magnitude in luminosity (H alpha and R band), and H alpha surface brightness, nearly 3 orders of magnitude in R surface brightness and nearly 2 orders of magnitude in H alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey (SDSS) spectroscopic sample, the EW distribution is broader than prism-selected samples, and the morphologies found include all common types of star-forming galaxies (e.g., irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). Thus, SINGG presents a superior census of star formation in the local universe suitable for further studies ranging from the analysis of H II regions to determination of the local cosmic star formation rate density.
Resumo:
We derive observed H alpha and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'(H alpha) = (9.4 +/- 1.8) x 10(38) h(70) ergs s(-1) Mpc(-3) for H alpha and l'(R) = (4.4 +/- 9.7) x 10(37) h(70) ergs s(-1) angstrom(-1) Mpc(-3) in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log ((rho)over dot(SFR) [M-circle dot yr(-1) Mpc(-3)]) = -1.80(-0.07)(+0.13)(random) +/- 0.03(systematic) + log (h(70)) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be t(gas) = 7.5(-2.1)(+1.3) Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(H alpha) = 28.8(-4.7)(+7.2) angstrom (21.2-3.5+4.2 angstrom without internal dust correction). As with similar surveys, these results imply that (rho)over dot(SFR)(z) decreases drastically from z similar to 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the. (rho)over dot(SFR)(z) evolution. This implies that the (rho)over dot(SFR)(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.
Resumo:
We present a detailed investigation into the recent star formation histories of 5697 luminous red galaxies (LRGs) based on the H delta (4101 angstrom), and [O II] (3727 angstrom) lines and the D4000 index. LRGs are luminous (L > 3L*) galaxies which have been selected to have photometric properties consistent with an old, passively evolving stellar population. For this study, we utilize LRGs from the recently completed 2dF-SDSS LRG and QSO Survey (2SLAQ). Equivalent widths of the H delta and [O II] lines are measured and used to define three spectral types, those with only strong H delta absorption (k+a), those with strong [O II] in emission (em) and those with both (em+a). All other LRGs are considered to have passive star formation histories. The vast majority of LRGs are found to be passive (similar to 80 per cent); however, significant numbers of k+a (2.7 per cent), em+a (1.2 per cent) and em LRGs (8.6 per cent) are identified. An investigation into the redshift dependence of the fractions is also performed. A sample of SDSS MAIN galaxies with colours and luminosities consistent with the 2SLAQ LRGs is selected to provide a low-redshift comparison. While the em and em+a fractions are consistent with the low-redshift SDSS sample, the fraction of k+a LRGs is found to increase significantly with redshift. This result is interpreted as an indication of an increasing amount of recent star formation activity in LRGs with redshift. By considering the expected lifetime of the k+a phase, the number of LRGs which will undergo a k+a phase can be estimated. A crude comparison of this estimate with the predictions from semi-analytic models of galaxy formation shows that the predicted level of k+a and em+a activities is not sufficient to reconcile the predicted mass growth for massive early types in a hierarchical merging scenario.
Resumo:
The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.