838 resultados para Computer based training
Resumo:
OBJECTIVE: To evaluate the effectiveness of a complex intervention implementing best practice guidelines recommending clinicians screen and counsel young people across multiple psychosocial risk factors, on clinicians' detection of health risks and patients' risk taking behaviour, compared to a didactic seminar on young people's health. DESIGN: Pragmatic cluster randomised trial where volunteer general practices were stratified by postcode advantage or disadvantage score and billing type (private, free national health, community health centre), then randomised into either intervention or comparison arms using a computer generated random sequence. Three months post-intervention, patients were recruited from all practices post-consultation for a Computer Assisted Telephone Interview and followed up three and 12 months later. Researchers recruiting, consenting and interviewing patients and patients themselves were masked to allocation status; clinicians were not. SETTING: General practices in metropolitan and rural Victoria, Australia. PARTICIPANTS: General practices with at least one interested clinician (general practitioner or nurse) and their 14-24 year old patients. INTERVENTION: This complex intervention was designed using evidence based practice in learning and change in clinician behaviour and general practice systems, and included best practice approaches to motivating change in adolescent risk taking behaviours. The intervention involved training clinicians (nine hours) in health risk screening, use of a screening tool and motivational interviewing; training all practice staff (receptionists and clinicians) in engaging youth; provision of feedback to clinicians of patients' risk data; and two practice visits to support new screening and referral resources. Comparison clinicians received one didactic educational seminar (three hours) on engaging youth and health risk screening. OUTCOME MEASURES: Primary outcomes were patient report of (1) clinician detection of at least one of six health risk behaviours (tobacco, alcohol and illicit drug use, risks for sexually transmitted infection, STI, unplanned pregnancy, and road risks); and (2) change in one or more of the six health risk behaviours, at three months or at 12 months. Secondary outcomes were likelihood of future visits, trust in the clinician after exit interview, clinician detection of emotional distress and fear and abuse in relationships, and emotional distress at three and 12 months. Patient acceptability of the screening tool was also described for the intervention arm. Analyses were adjusted for practice location and billing type, patients' sex, age, and recruitment method, and past health risks, where appropriate. An intention to treat analysis approach was used, which included multilevel multiple imputation for missing outcome data. RESULTS: 42 practices were randomly allocated to intervention or comparison arms. Two intervention practices withdrew post allocation, prior to training, leaving 19 intervention (53 clinicians, 377 patients) and 21 comparison (79 clinicians, 524 patients) practices. 69% of patients in both intervention (260) and comparison (360) arms completed the 12 month follow-up. Intervention clinicians discussed more health risks per patient (59.7%) than comparison clinicians (52.7%) and thus were more likely to detect a higher proportion of young people with at least one of the six health risk behaviours (38.4% vs 26.7%, risk difference [RD] 11.6%, Confidence Interval [CI] 2.93% to 20.3%; adjusted odds ratio [OR] 1.7, CI 1.1 to 2.5). Patients reported less illicit drug use (RD -6.0, CI -11 to -1.2; OR 0·52, CI 0·28 to 0·96), and less risk for STI (RD -5.4, CI -11 to 0.2; OR 0·66, CI 0·46 to 0·96) at three months in the intervention relative to the comparison arm, and for unplanned pregnancy at 12 months (RD -4.4; CI -8.7 to -0.1; OR 0·40, CI 0·20 to 0·80). No differences were detected between arms on other health risks. There were no differences on secondary outcomes, apart from a greater detection of abuse (OR 13.8, CI 1.71 to 111). There were no reports of harmful events and intervention arm youth had high acceptance of the screening tool. CONCLUSIONS: A complex intervention, compared to a simple educational seminar for practices, improved detection of health risk behaviours in young people. Impact on health outcomes was inconclusive. Technology enabling more efficient, systematic health-risk screening may allow providers to target counselling toward higher risk individuals. Further trials require more power to confirm health benefits. TRIAL REGISTRATION: ISRCTN.com ISRCTN16059206.
Resumo:
Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be developed in a forthcoming article (part II).
Resumo:
This paper attempts to shed light on the competencies a teacher must have inorder to teach in online university environments. We will relate a teacher trainingexperience, which was designed taking into account the methodological criteriaestablished in line with previous theoretical principles. The main objective of ouranalysis is to identify the achievements and difficulties of a specific formativeexperience, with the ultimate goal of assessing the suitability of this conceptualmethodologicalframework for the design of formative proposals aiming to contribute tothe development of teacher competencies for virtual environments.
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.
Resumo:
BACKGROUND: Simulation techniques are spreading rapidly in medicine. Suc h resources are increasingly concentrated in Simulation Laboratories. The MSRP-USP is structuring such a laboratory and is interested in the prevalence of individual initiatives that could be centralized there. The MSRP-USP currently has five full-curriculum courses in the health sciences: Medicine, Speech Therapy, Physical Therapy, Nutrition, and Occupational Therapy, all consisting of core disciplines. GOAL: To determine the prevalence of simulation techniques in the regular courses at MSRP-USP. METHODS: Coordinators of disciplines in the various courses were interviewed using a specifically designed semi-structured questionnaire, and all the collected data were stored in a dedicated database. The disciplines were grouped according to whether they used (GI) or did not use (GII) simulation resources. RESULTS AND DISCUSSION: 256 disciplines were analyzed, of which only 18.3% used simulation techniques, varying according to course: Medicine (24.7.3%), Occupational Therapy (23.0%), Nutrition (15.9%), Physical Therapy (9.8%), and Speech Therapy (9.1%). Computer simulation programs predominated (42.5%) in all five courses. The resources were provided mainly by MSRP-USP (56.3%), with additional funding coming from other sources based on individual initiatives. The same pattern was observed for maintenance. There was great interest in centralizing the resources in the new Simulation Laboratory in order to facilitate maintenance, but there was concern about training and access to the material. CONCLUSIONS: 1) The MSRP-USP simulation resources show low complexity and are mainly limited to computer programs; 2) Use of simulation varies according to course, and is most prevalent in Medicine; 3) Resources are scattered across several locations, and their acquisition and maintenance depend on individual initiatives rather than central coordination or curricular guidelines
Resumo:
Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.
Resumo:
The overall goal of the study was to describe nurses’ acceptance of an Internet-based support system in the care of adolescents with depression. The data were collected in four phases during the period 2006 – 2010 from nurses working in adolescent psychiatric outpatient clinics and from professionals working with adolescents in basic public services. In the first phase, the nurses’ anticipated perceptions of the usefulness of the Internet-based support system before its implementation was explored. In the second phase, the nurses’ perceived ease of computer and Internet use and attitudes toward it were explored. In the third phase, the features of the support system and its implementation process were described. In the fourth phase, the nurses’ experiences of behavioural intention and actual system use of the Internet-based support were described in psychiatric out-patient care after one year use. The Technology Acceptance Model (TAM) was used to structure the various research phases. Several benefits were identified from the nurses’ perspective in using the Internet-based support system in the care of adolescents with depression. The nurses’ technology skills were good and their attitudes towards computer use were positive. The support system was developed in various phases to meet the adolescents’ needs. Before the implementation of the information technology (IT)-based support system, it is important to pay attention to the nurses’ IT-training, technology support, resources, and safety as well as ethical issues related to the support system. After one year of using the system, the nurses perceived the Internet-based support system to be useful in the care of adolescents with depression. The adolescents’ independent work with the support system at home and the program’s systematic character were experienced as conducive from the point of view of the treatment. However, the Internet-based support system was integrated only partly into the nurseadolescent interaction even though the nurses’ perceptions of it were positive. The use of the IT-based system as part of the adolescents’ depression care was seen positively and its benefits were recognized. This serves as a good basis for future IT-based techniques. Successful implementations of IT-based support systems need a systematic implementation plan and commitment from the part of the organization and its managers. Supporting and evaluating the implementation of an IT-based system should pay attention to changing the nurses’ work styles. Health care organizations should be offered more flexible opportunities to utilize IT-based systems in direct patient care in the future.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
This study compared the relative effectiveness of two computerized remedial reading programs in improving the reading word recognition, rate, and comprehension of adolescent readers demonstrating significant and longstanding reading difficulties. One of the programs involved was Autoskill Component Reading Subskills Program, which provides instruction in isolated letters, syllables, and words, to a point of rapid automatic responding. This program also incorporates reading disability subtypes in its approach. The second program, Read It Again. Sam, delivers a repeated reading strategy. The study also examined the feasibility of using peer tutors in association with these two programs. Grade 9 students at a secondary vocational school who satisfied specific criteria with respect to cognitive and reading ability participated. Eighteen students were randomly assigned to three matched groups, based on prior screening on a battery of reading achievement tests. Two I I groups received training with one of the computer programs; the third group acted as a control and received the remedial reading program offered within the regular classroom. The groups met daily with a trained tutor for approximately 35 minutes, and were required to accumulate twenty hours of instruction. At the conclusion of the program, the pretest battery was repeated. No significant differences were found in the treatment effects of the two computer groups. Each of the two treatment groups was able to effect significantly improved reading word recognition and rate, relative to the control group. Comprehension gains were modest. The treatment groups demonstrated a significant gain, relative to the control group, on one of the three comprehension measures; only trends toward a gain were noted on the remaining two measures. The tutoring partnership appeared to be a viable alternative for the teacher seeking to provide individualized computerized remedial programs for adolescent unskilled readers. Both programs took advantage of computer technology in providing individualized drill and practice, instant feedback, and ongoing recordkeeping. With limited cautions, each of these programs was considered effective and practical for use with adolescent unskilled readers.
Resumo:
This thesis aims to uncover the dynamics, causes and outcomes of women's reliance on unregulated home-based child care in Ontario, Canada, and the implications ofthis form of care for women's equality. Drawing on a longitudinal qualitative study, I examine the diverse experience of 14 women using home-based child care and engaged in both paid work/training and care work for children under the age of six, and draw comparisons with users of other forms of child care. I argue that home-based child care involves high levels of instability for continuity of care and is chosen largely as a default position based on economic considerations. It represents a compromise between the demands of social reproduction and paid work/training that entangles mothers in relations of exploitation with care providers. Doing so leaves both mothers and care providers socially and economically vulnerable and relying on social networks to fill in the gaps.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems