946 resultados para Commercially Pure titaniums


Relevância:

20.00% 20.00%

Publicador:

Resumo:

comp. sugli originali da Eude Lolli

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of human osteoblasts to materials is crucial for evaluating biocompatibility of an implant material for bone defects. Previous work in our lab demonstrated that the response of human osteoblasts to orthopaedic and dental materials in vitro varies depending on the sex and age of the patient [1]. Osteoblasts from female patients older than 60 years old, adhered less and produced less matrix proteins and calcification than osteoblasts from younger female patients and all ages of male patients. Recently developed, porous tantalum demonstrates improved biomechanical properties for bone and good biocompatibility in in vivo human studies, however there are few, if any, in vitro biocompatibility studies on this material. In this project, we aimed to compare the phenotypic expression of human osteoblasts from young and old female patients to commercially available Ti-6Al-4V and porous tantalum in a well-developed in vitro system. 1. Zhang H, Lewis CG, Aronow MS, Gronowicz G. The effect of patient age on human osteoblasts’ response to Ti-6Al-4V implants in vitro. J. Orthop. Res. 2004;22(1):30-8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the impact of medium-term exposure to elevated pCO2 levels (750-1200 ppm) on the physiological processes of juvenile Mytilus chilensis mussels over a period of 70 d in a mesocosm system. Three equilibration tanks filled with filtered seawater were adjusted to three pCO2 levels: 380 (control), 750 and 1200 ppm by bubbling air or an air-CO2 mixture through the water. For the control, atmospheric air (with aprox. 380 ppm CO2) was bubbled into the tank; for the 750 and 1200 ppm treatments, dry air and pure CO2 were blended to each target concentration using mass flow controllers for air and CO2. No impact on feeding activity was observed at the beginning of the experiment, but a significant reduction in clearance rate was observed after 35 d of exposure to highly acidified seawater. Absorption rate and absorption efficiency were reduced at high pCO2 levels. In addition, oxygen uptake fell significantly under these conditions, indicating a metabolic depression. These physiological responses of the mussels resulted in a significant reduction of energy available for growth (scope for growth) with important consequences for the aquaculture of this species during medium-term exposure to acid conditions. The results of this study clearly indicate that high pCO2 levels in the seawater have a negative effect on the health of M. chilensis. Therefore, the predicted acidification of seawater associated with global climate change could be harmful to this ecologically and commercially important mussel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was funded by the Medical ResearchCouncil (G1100357).We are grateful to Anne Saunderson, Joan Creiger and the staff of the Bruntsfield Suite, Royal Infirmary of Edinburgh, for their considerable assistance in patient recruitment. Funding to pay the Open Access publication charges for this article was provided by MRC grant G1100357.