901 resultados para Combinatorial Veronesian
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.
Resumo:
Fueled by ever-growing genomic information and rapid developments of proteomics–the large scale analysis of proteins and mapping its functional role has become one of the most important disciplines for characterizing complex cell function. For building functional linkages between the biomolecules, and for providing insight into the mechanisms of biological processes, last decade witnessed the exploration of combinatorial and chip technology for the detection of bimolecules in a high throughput and spatially addressable fashion. Among the various techniques developed, the protein chip technology has been rapid. Recently we demonstrated a new platform called “Spacially addressable protein array” (SAPA) to profile the ligand receptor interactions. To optimize the platform, the present study investigated various parameters such as the surface chemistry and role of additives for achieving high density and high-throughput detection with minimal nonspecific protein adsorption. In summary the present poster will address some of the critical challenges in protein micro array technology and the process of fine tuning to achieve the optimum system for solving real biological problems.
Resumo:
In recent years, some epidemiologic studies have attributed adverse effects of air pollutants on health not only to particles and sulfur dioxide but also to photochemical air pollutants (nitrogen dioxide and ozone). The effects are usually small, leading to some inconsistencies in the results of the studies. Furthermore, the different methodologic approaches of the studies used has made it difficult to derive generic conclusions. We provide here a quantitative summary of the short-term effects of photochemical air pollutants on mortality in seven Spanish cities involved in the EMECAM project, using generalized additive models from analyses of single and multiple pollutants. Nitrogen dioxide and ozone data were provided by seven EMECAM cities (Barcelona, Gijón, Huelva, Madrid, Oviedo, Seville, and Valencia). Mortality indicators included daily total mortality from all causes excluding external causes, daily cardiovascular mortality, and daily respiratory mortality. Individual estimates, obtained from city-specific generalized additive Poisson autoregressive models, were combined by means of fixed effects models and, if significant heterogeneity among local estimates was found, also by random effects models. Significant positive associations were found between daily mortality (all causes and cardiovascular) and NO2, once the rest of air pollutants were taken into account. A 10 μg/m3 increase in the 24-hr average 1-day NO2 level was associated with an increase in the daily number of deaths of 0.43% [95% confidence interval(CI), –0.003–0.86%] for all causes excluding external. In the case of significant relationships, relative risks for cause-specific mortality were nearly twice as much as that for total mortality for all the photochemical pollutants. Ozone was independently related only to cardiovascular daily mortality. No independent statistically significant relationship between photochemical air pollutants and respiratory mortality was found. The results in this study suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.
Resumo:
Aquesta tesi doctoral està basada en el desenvolupament de nous agents antimicrobians derivats del pèptid híbrid cecropina A-melitina WKLFKKILKVL-NH2 (Pep3) que siguin sostenibles i útils per al control de malalties de plantes. Es van dissenyar i sintetitzar més de 133 anàlegs de Pep3 mitjançant química combinatòria. Es van obtenir anàlegs de Pep3 amb una elevada activitat contra fitopatògens i que presentaven baixa toxicitat. Els millors anàlegs van presentar eficàcies comparables amb pesticides de referència en la prevenció d'infeccions causades per fitopatògens. Es va estudiar el mecanisme d'acció de KKLFKKILKYL-NH2 (BP100) investigant la seva interacció amb models de membrana mitjançant tècniques espectroscòpiques. Es va observar la capacitat de BP100 a induir la permeabilització, la neutralització, i l'agregació de vesícules lipídiques aniòniques a una determinada concentració llindar. Es va deduir una equació que relaciona la CMI d'un pèptid antimicrobià amb la constant de partició i la concentració llindar en la membrana.
Resumo:
Aquesta tesi doctoral se centra en l'estudi de l'aplicació de pèptids antimicrobians en la lluita contra agents patògens de cultius de plantes d'interès econòmic.L'estratègia sintètica s'ha portat a terme utilitzant metodologies convencionals de síntesi de pèptids en fase sòlida com l'estratègia tridimensional ortogonal Fmoc/tBut/Allyl. Ha calgut fer la recerca de les condicions òptimes per a l'eliminació del grup Allyl i la ciclació. D'entre els pèptids cíclics de 4-10 aminoacids sintetitzats, el decapèptid c(Lys-Leu-Lys-Leu-Lys-Phe-Lys-Lys-Leu-Gln) ha resultat ésser el més efectiu i s'ha pres com a base per al disseny d'una quimioteca de 56 pèptids. Dels resultats obtinguts s'ha sintetitzat una segona quimioteca basada en l'estructura general c(X1-X2-X3-X4-Lys-Phe-Lys-Lys-Leu-Gln) determinada com la que posseix el millor perfil d'activitat. Els pèptids més efectius obtinguts constituixen els primers exemples de pèptids cíclics actius contra E. amylovora i poden ser considerats com a bons candidats pel desenvolupament d'agents antimicrobians efectius en protecció vegetal.