964 resultados para Color shades
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and region specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ C-14 measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, subtropical North Pacific, Ross Sea, West Antarctic Peninsula, and the Antarctic Polar Frontal Zone. Average model skill, as determined by root-mean square difference calculations, was lowest in the Black and Mediterranean Seas, highest in the pelagic North Atlantic and the Antarctic Polar Frontal Zone, and intermediate in the other six regions. The maximum fraction of model skill that may be attributable to uncertainties in both the input variables and in situ NPP measurements was nearly 72%. on average, the simplest depth/wavelength integrated models performed no worse than the more complex depth/wavelength resolved models. Ocean color models were not highly challenged in extreme conditions of surface chlorophyll-a and sea surface temperature, nor in high-nitrate low-chlorophyll waters. Water column depth was the primary influence on ocean color model performance such that average skill was significantly higher at depths greater than 250 m, suggesting that ocean color models are more challenged in Case-2 waters (coastal) than in Case-1 (pelagic) waters. Given that in situ chlorophyll-a data was used as input data, algorithm improvement is required to eliminate the poor performance of ocean color NPP models in Case-2 waters that are close to coastlines. Finally, ocean color chlorophyll-a algorithms are challenged by optically complex Case-2 waters, thus using satellite-derived chlorophyll-a to estimate NPP in coastal areas would likely further reduce the skill of ocean color models.
Resumo:
A new hemiodontid species, Hemiodus tocantinensis, is described from the rio Tocantins, Amazon basin, Brazil. It is most closely related to H. ternezi and H. thayeria based on the presence of a dark longitudinal stripe extending from behind the eye or the opercle to the tip of lower caudal fin lobe but is distinguished by the possession of 51 to 58 perforated lateral line scales and an oblique dark blotch on the dorsal fin extending from its anterior distal portion through the middle basal portion of the fin. The evolution of color patterns and tooth shapes present in the Hemiodus species is commented.
Resumo:
We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global color model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.
Resumo:
We investigated if differences in morphological characters in two species of Metrodorea (Rutaceae) from Brazilian semideciduous forests correspond to some pollination divergence. M. nigra and M. stipularis are sympatric species, display a similar floral morphology, are protandrous, self-incompatible, their flower periods overlap, and both are pollinated by flies. M. nigra main pollinators are Pseudoptiloleps nigripoda (Muscidae) and Fannia sp. (Fanniidae); M. stipularis major pollinators are Phaenicia eximia (Calliphoridae), Palpada sp. and Ornidia obesa (Syrphidae). The distinct floral odor (disagreeable in M. nigra and sweet in M. stipularis) and color (brownish violet vs. pale yellow) determine the differences on type and number of floral visitors observed. Several species from semideciduous forests initially considered to be pollinated by diverse insects, present flies as main pollinators, stressing the importance of fly pollination in such habitats.
Resumo:
We show that soft color rearrangement of final states can account for the appearance of rapidity gaps between jets. In the color evaporation model the probability to form a gap is simply determined by the color multiplicity of the final state. This model has no free parameters and reproduces all data obtained by the ZEUS, H1, DØ, and CDF Collaborations. ©1999 The American Physical Society.
Resumo:
Sol-gel derived hybrids that contain OCH2CH2 (polyethylene glycol, PEG) repeat units grafted onto a siliceous backbone by urea, -NHC(=O)NH-, or urethane, -NHC(=O)O-, bridges have been prepared. It is demonstrated that the white light PL of these materials results from an unusual convolution of a longer lived emission that originates in the NH groups of the urea/urethane bridges with shorter lived electron-hole recombinations occurring in the nanometer-sized siliceous domains. The PL efficiencies reported here (maximum quantum yields at room temperature of ≈ 0.20 ± 0.02 at a 400 nm excitation wavelength) are in the same range as those for tetramethoxysilane-formic acid, and APTES-acetic acid, sol-gel derived phosphors. The high quantum yields combined with the possibility of tuning the emission to colors across the chromaticity diagram present a wide range of potential applications for these hybrid materials.
Resumo:
We show that soft color rearrangement of final states can account for the appearance of rapidity gaps between jets. In the color evaporation model the probability to form a gap is simply determined by the color multiplicity of the final state. This model has no free parameters and reproduces all data obtained by the ZEUS, H1, DØ, and CDF collaborations. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Introduction: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. Purpose: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3) of composite resin Filtek Z-250 (3M ESPE) after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante) and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE). Methods: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. Results: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. Conclusion: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.
Resumo:
In this work the color dependence of resin composites with the background color was evaluated. The objective was to measure since what thickness the color of the sample stops being influenced by the color of the background over which the resin is placed and the methodology used in experiment was based in analyzing the contrast of digital images of the sample over a black background. The results shown that since 0.8 mm the images contrast becomes almost constant; it prove that since this thickness the color of resin composite depends on the optical resin properties only. The experiment was repeated under three conditions of luminosity to evaluate the influence of it on the image contrast and the results obtained were identical.
Resumo:
Objectives: The objective of this study was to evaluate by a visual method of comparison the color stability of nonpigmented and pigmented facial silicones after accelerated aging. Materials and Methods: Two kinds of silicones were used in this study; one specifically formulated for facial prostheses and the other an acetic silicone for industrial use. Twenty-four trial bodies were made for each silicone. These were divided into colorless and intrinsically pigmented groups: ceramic, make-up, and iron oxide. The groups were submitted to accelerated aging for nonmetallic materials. An initial reading and subsequent readings were made at 163, 351, 692, and 1000 hours using a visual method of comparison. The values were annotated in a spreadsheet by two observers, according to scores elaborated for this study. Results: All groups presented color stability in the visual method. According to the results obtained and analyzed in this study, we can conclude that both silicones, Silastic 732 RTV and Silastic MDX 4-4210, behaved similarly, they can therefore be indicated for use in maxillofacial prosthesis. The time factor of aging influenced negatively, independently of the pigmentation, or lack of it, and of silicones and no group had visually noticeable alterations in any of the accelerated aging time, independently of the addition or not of pigments.