990 resultados para Clifford, Algebra de
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Matemática, Estatística, pela Universidade Nova de Lisboa, faculdade de Ciências e Tecnologia
Resumo:
The rank of a semigroup, an important and relevant concept in Semigroup Theory, is the cardinality of a least-size generating set. Semigroups of transformations that preserve or reverse the order or the orientation as well as semigroups of transformations preserving an equivalence relation have been widely studied over the past decades by many authors. The purpose of this article is to compute the ranks of the monoid
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
In recent papers, formulas are obtained for directional derivatives, of all orders, of the determinant, the permanent, the m-th compound map and the m-th induced power map. This paper generalizes these results for immanants and for other symmetric powers of a matrix.
Resumo:
In this paper, the exact value for the norm of directional derivatives, of all orders, for symmetric tensor powers of operators on finite dimensional vector spaces is presented. Using this result, an upper bound for the norm of all directional derivatives of immanants is obtained.
Resumo:
Balanced nesting is the most usual form of nesting and originates, when used singly or with crossing of such sub-models, orthogonal models. In balanced nesting we are forced to divide repeatedly the plots and we have few degrees of freedom for the first levels. If we apply stair nesting we will have plots all of the same size rendering the designs easier to apply. The stair nested designs are a valid alternative for the balanced nested designs because we can work with fewer observations, the amount of information for the different factors is more evenly distributed and we obtain good results. The inference for models with balanced nesting is already well studied. For models with stair nesting it is easy to carry out inference because it is very similar to that for balanced nesting. Furthermore stair nested designs being unbalanced have an orthogonal structure. Other alternative to the balanced nesting is the staggered nesting that is the most popular unbalanced nested design which also has the advantage of requiring fewer observations. However staggered nested designs are not orthogonal, unlike the stair nested designs. In this work we start with the algebraic structure of the balanced, the stair and the staggered nested designs and we finish with the structure of the cross between balanced and stair nested designs.
Resumo:
We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.
Resumo:
Journal of Algebra, 321 (2009), p. 743–757
Resumo:
Algebra Colloquium, 15 (2008), p. 581–588
Resumo:
In recent papers, the authors obtained formulas for directional derivatives of all orders, of the immanant and of the m-th xi-symmetric tensor power of an operator and a matrix, when xi is a character of the full symmetric group. The operator norm of these derivatives was also calculated. In this paper, similar results are established for generalized matrix functions and for every symmetric tensor power.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
Let and be matrices over an algebraically closed field. Let be elements of such that and . We give necessary and sufficient condition for the existence of matrices and similar to and, respectively, such that has eigenvalues.
Resumo:
The Online Mathematics Education Project (MatActiva) is an exciting new initiative which aims to support and enhance mathematics education. The project is led by the Institute of Accounting and Administration of Porto (ISCAP), part of the Polytechnic Institute of Porto (IPP). It provides innovative resources and carefully constructed materials around themes such as Elementary Mathematics, Calculus, Algebra, Statistics and Financial Mathematics to help support and inspire students and teachers of mathematics. The goal is to increase mathematical understanding, confidence and enjoyment, enrich the mathematical experience of each person, and promote creative and imaginative approaches to mathematics. Furthermore the project can be used to deliver engaging and effective mathematics instruction through the flipped classroom model. This paper also presents the findings of a large survey, whose propose was to study the student’s reaction to the project.