901 resultados para Classification image technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video-based vehicle detection is the focus of increasing interest due to its potential towards collision avoidance. In particular, vehicle verification is especially challenging due to the enormous variability of vehicles in size, color, pose, etc. In this paper, a new approach based on supervised learning using Principal Component Analysis (PCA) is proposed that addresses the main limitations of existing methods. Namely, in contrast to classical approaches which train a single classifier regardless of the relative position of the candidate (thus ignoring valuable pose information), a region-dependent analysis is performed by considering four different areas. In addition, a study on the evolution of the classification performance according to the dimensionality of the principal subspace is carried out using PCA features within a SVM-based classification scheme. Indeed, the experiments performed on a publicly available database prove that PCA dimensionality requirements are region-dependent. Hence, in this work, the optimal configuration is adapted to each of them, rendering very good vehicle verification results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los alimentos son sistemas complejos, formados por diversas estructuras a diferentes escalas: macroscópica y microscópica. Muchas propiedades de los alimentos, que son importantes para su procesamiento, calidad y tratamiento postcosecha, están relacionados con su microestructura. La presente tesis doctoral propone una metodología completa para la determinación de la estructura de alimentos desde un punto de vista multi-escala, basándose en métodos de Resonancia Magnética Nuclear (NMR). Las técnicas de NMR son no invasivas y no destructivas y permiten el estudio tanto de macro- como de microestructura. Se han utilizado distintos procedimientos de NMR dependiendo del nivel que se desea estudiar. Para el nivel macroestructural, la Imagen de Resonancia Magnética (MRI) ha resultado ser muy útil para la caracterización de alimentos. Para el estudio microestructural, la MRI requiere altos tiempos de adquisición, lo que hace muy difícil la transferencia de esta técnica a aplicaciones en industria. Por tanto, la optimización de procedimientos de NMR basados en secuencias relaxometría 2D T1/T2 ha resultado ser una estrategia primordial en esta tesis. Estos protocolos de NMR se han implementado satisfactoriamente por primera vez en alto campo magnético. Se ha caracterizado la microestructura de productos alimentarios enteros por primera vez utilizando este tipo de protocolos. Como muestras, se han utilizado dos tipos de productos: modelos de alimentos y alimentos reales (manzanas). Además, como primer paso para su posterior implementación en la industria agroalimentaria, se ha mejorado una línea transportadora, especialmente diseñada para trabajar bajo condiciones de NMR en trabajos anteriores del grupo LPF-TAGRALIA. Se han estudiado y seleccionado las secuencias más rápidas y óptimas para la detección de dos tipos de desórdenes internos en manzanas: vitrescencia y roturas internas. La corrección de las imágenes en movimiento se realiza en tiempo real. Asimismo, se han utilizado protocolos de visión artificial para la clasificación automática de manzanas potencialmente afectadas por vitrescencia. El presente documento está dividido en diferentes capítulos: el Capítulo 2 explica los antecedentes de la presente tesis y el marco del proyecto en el que se ha desarrollado. El Capítulo 3 recoge el estado del arte. El Capítulo 4 establece los objetivos de esta tesis doctoral. Los resultados se dividen en cinco sub-secciones (dentro del Capítulo 5) que corresponden con los trabajos publicados bien en revistas revisadas por pares, bien en congresos internacionales o bien como capítulos de libros revisados por pares. La Sección 5.1. es un estudio del desarrollo de la vitrescencia en manzanas mediante MRI y lo relaciona con la posición de la fruta dentro de la copa del árbol. La Sección 5.2 presenta un trabajo sobre macro- y microestructura en modelos de alimentos. La Sección 5.3 es un artículo en revisión en una revista revisada por pares, en el que se hace un estudio microestrcutural no destructivo mediante relaxometría 2D T1/T2. la Sección 5.4, hace una comparación entre manzanas afectadas por vitrescencia mediante dos técnicas: tomografía de rayos X e MRI, en manzana. Por último, en la Sección 5.5 se muestra un trabajo en el que se hace un estudio de secuencias de MRI en línea para la evaluación de calidad interna en manzanas. Los siguientes capítulos ofrecen una discusión y conclusiones (Capítulo 6 y 7 respectivamente) de todos los capítulos de esta tesis doctoral. Finalmente, se han añadido tres apéndices: el primero con una introducción de los principios básicos de resonancia magnética nuclear (NMR) y en los otros dos, se presentan sendos estudios sobre el efecto de las fibras en la rehidratación de cereales de desayuno extrusionados, mediante diversas técnicas. Ambos trabajos se presentaron en un congreso internacional. Los resultados más relevantes de la presente tesis doctoral, se pueden dividir en tres grandes bloques: resultados sobre macroestructura, resultados sobre microestructura y resultados sobre MRI en línea. Resultados sobre macroestructura: - La imagen de resonancia magnética (MRI) se aplicó satisfactoriamente para la caracterización de macroestructura. En particular, la reconstrucción 3D de imágenes de resonancia magnética permitió identificar y caracterizar dos tipos distintos de vitrescencia en manzanas: central y radial, que se caracterizan por el porcentaje de daño y la conectividad (número de Euler). - La MRI proveía un mejor contraste para manzanas afectadas por vitrescencia que las imágenes de tomografía de rayos X (X-Ray CT), como se pudo verificar en muestras idénticas de manzana. Además, el tiempo de adquisición de la tomografía de rayos X fue alrededor de 12 veces mayor (25 minutos) que la adquisición de las imágenes de resonancia magnética (2 minutos 2 segundos). Resultados sobre microestructura: - Para el estudio de microestructura (nivel subcelular) se utilizaron con éxito secuencias de relaxometría 2D T1/T2. Estas secuencias se usaron por primera vez en alto campo y sobre piezas de alimento completo, convirtiéndose en una forma no destructiva de llevar a cabo estudios de microestructura. - El uso de MRI junto con relaxometría 2D T1/T2 permite realizar estudios multiescala en alimentos de forma no destructiva. Resultados sobre MRI en línea: - El uso de imagen de resonancia magnética en línea fue factible para la identificación de dos tipos de desórdenes internos en manzanas: vitrescencia y podredumbre interna. Las secuencias de imagen tipo FLASH resultaron adecuadas para la identificación en línea de vitrescencia en manzanas. Se realizó sin selección de corte, debido a que la vitrescencia puede desarrollarse en cualquier punto del volumen de la manzana. Se consiguió reducir el tiempo de adquisición, de modo que se llegaron a adquirir 1.3 frutos por segundos (758 ms por fruto). Las secuencias de imagen tipo UFLARE fueron adecuadas para la detección en línea de la podredumbre interna en manzanas. En este caso, se utilizó selección de corte, ya que se trata de un desorden que se suele localizar en la parte central del volumen de la manzana. Se consiguió reducir el tiempo de adquisicón hasta 0.67 frutos por segundo (1475 ms por fruto). En ambos casos (FLASH y UFLARE) fueron necesarios algoritmos para la corrección del movimiento de las imágenes en tiempo real. ABSTRACT Food is a complex system formed by several structures at different scales: macroscopic and microscopic. Many properties of foods that are relevant to process engineering or quality and postharvest treatments are related to their microstructure. This Ph.D Thesis proposes a complete methodology for food structure determination, in a multiscale way, based on the Nuclear Magnetic Resonance (NMR) phenomenon since NMR techniques are non-invasive and non-destructive, and allow both, macro- and micro-structure study. Different NMR procedures are used depending on the structure level under study. For the macrostructure level, Magnetic Resonance Imaging (MRI) revealed its usefulness for food characterization. For microstructure insight, MRI required high acquisition times, which is a hindrance for transference to industry applications. Therefore, optimization of NMR procedures based on T1/T2 relaxometry sequences was a key strategy in this Thesis. These NMR relaxometry protocols, are successfully implemented in high magnetic field. Microstructure of entire food products have been characterized for the first time using these protocols. Two different types of food products have been studied: food models and actual food (apples). Furthermore, as a first step for the food industry implementation, a grading line system, specially designed for working under NMR conditions in previous works of the LPF-TAGRALIA group, is improved. The study and selection of the most suitable rapid sequence to detect two different types of disorders in apples (watercore and internal breakdown) is performed and the real time image motion correction is applied. In addition, artificial vision protocols for the automatic classification of apples potentially affected by watercore are applied. This document is divided into seven different chapters: Chapter 2 explains the thesis background and the framework of the project in which it has been worked. Chapter 3 comprises the state of the art. Chapter 4 establishes de objectives of this Ph.D thesis. The results are divided into five different sections (in Chapter 5) that correspond to published peered reviewed works. Section 5.1 assesses the watercore development in apples with MRI and studies the effect of fruit location in the canopy. Section 5.2 is an MRI and 2D relaxometry study for macro- and microstructure assessment in food models. Section 5.3 is a non-destructive microstructural study using 2D T1/T2 relaxometry on watercore affected apples. Section 5.4 makes a comparison of X-ray CT and MRI on watercore disorder of different apple cultivars. Section 5.5, that is a study of online MRI sequences for the evaluation of apple internal quality. The subsequent chapters offer a general discussion and conclusions (Chapter 6 and Chapter 7 respectively) of all the works performed in the frame of this Ph.D thesis (two peer reviewed journals, one book chapter and one international congress).Finally, three appendices are included in which an introduction to NMR principles is offered and two published proceedings regarding the effect of fiber on the rehydration of extruded breakfast cereal are displayed. The most relevant results can be summarized into three sections: results on macrostructure, results on microstructure and results on on-line MRI. Results on macrostructure: - MRI was successfully used for macrostructure characterization. Indeed, 3D reconstruction of MRI in apples allows to identify two different types of watercore (radial and block), which are characterized by the percentage of damage and the connectivity (Euler number). - MRI provides better contrast for watercore than X-Ray CT as verified on identical samples. Furthermore, X-Ray CT images acquisition time was around 12 times higher (25 minutes) than MRI acquisition time (2 minutes 2 seconds). Results on microstructure: - 2D T1/T2 relaxometry were successfully applied for microstructure (subcellular level) characterization. 2D T1/T2 relaxometry sequences have been applied for the first time on high field for entire food pieces, being a non-destructive way to achieve microstructure study. - The use of MRI together with 2D T1/T2 relaxometry sequences allows a non-destructive multiscale study of food. Results on on-line MRI: - The use of on-line MRI was successful for the identification of two different internal disorders in apples: watercore and internal breakdown. FLASH imaging was a suitable technique for the on-line detection of watercore disorder in apples, with no slice selection, since watercore is a physiological disorder that may be developed anywhere in the apple volume. 1.3 fruits were imaged per second (768 ms per fruit). UFLARE imaging is a suitable sequence for the on-line detection of internal breakdown disorder in apples. Slice selection was used, as internal breakdown is usually located in the central slice of the apple volume. 0.67 fruits were imaged per second (1475 ms per fruit). In both cases (FLASH and UFLARE) motion correction was performed in real time, during the acquisition of the images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente Tesis investiga el campo del reconocimiento automático de imágenes mediante ordenador aplicado al análisis de imágenes médicas en mamografía digital. Hay un interés por desarrollar sistemas de aprendizaje que asistan a los radiólogos en el reconocimiento de las microcalcificaciones para apoyarles en los programas de cribado y prevención del cáncer de mama. Para ello el análisis de las microcalcificaciones se ha revelado como técnica clave de diagnóstico precoz, pero sin embargo el diseño de sistemas automáticos para reconocerlas es complejo por la variabilidad y condiciones de las imágenes mamográficas. En este trabajo se analizan los planteamientos teóricos de diseño de sistemas de reconocimiento de imágenes, con énfasis en los problemas específicos de detección y clasificación de microcalcificaciones. Se ha realizado un estudio que incluye desde las técnicas de operadores morfológicos, redes neuronales, máquinas de vectores soporte, hasta las más recientes de aprendizaje profundo mediante redes neuronales convolucionales, contemplando la importancia de los conceptos de escala y jerarquía a la hora del diseño y sus implicaciones en la búsqueda de la arquitectura de conexiones y capas de la red. Con estos fundamentos teóricos y elementos de diseño procedentes de otros trabajos en este área realizados por el autor, se implementan tres sistemas de reconocimiento de mamografías que reflejan una evolución tecnológica, culminando en un sistema basado en Redes Neuronales Convolucionales (CNN) cuya arquitectura se diseña gracias al análisis teórico anterior y a los resultados prácticos de análisis de escalas llevados a cabo en nuestra base de datos de imágenes. Los tres sistemas se entrenan y validan con la base de datos de mamografías DDSM, con un total de 100 muestras de entrenamiento y 100 de prueba escogidas para evitar sesgos y reflejar fielmente un programa de cribado. La validez de las CNN para el problema que nos ocupa queda demostrada y se propone un camino de investigación para el diseño de su arquitectura. ABSTRACT This Dissertation investigates the field of computer image recognition applied to medical imaging in mammography. There is an interest in developing learning systems to assist radiologists in recognition of microcalcifications to help them in screening programs for prevention of breast cancer. Analysis of microcalcifications has emerged as a key technique for early diagnosis of breast cancer, but the design of automatic systems to recognize them is complicated by the variability and conditions of mammographic images. In this Thesis the theoretical approaches to design image recognition systems are discussed, with emphasis on the specific problems of detection and classification of microcalcifications. Our study includes techniques ranging from morphological operators, neural networks and support vector machines, to the most recent deep convolutional neural networks. We deal with learning theory by analyzing the importance of the concepts of scale and hierarchy at the design stage and its implications in the search for the architecture of connections and network layers. With these theoretical facts and design elements coming from other works in this area done by the author, three mammogram recognition systems which reflect technological developments are implemented, culminating in a system based on Convolutional Neural Networks (CNN), whose architecture is designed thanks to the previously mentioned theoretical study and practical results of analysis conducted on scales in our image database. All three systems are trained and validated against the DDSM mammographic database, with a total of 100 training samples and 100 test samples chosen to avoid bias and stand for a real screening program. The validity of the CNN approach to the problem is demonstrated and a research way to help in designing the architecture of these networks is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-line partial discharge (PD) measurements have become a common technique for assessing the insulation condition of installed high voltage (HV) insulated cables. When on-line tests are performed in noisy environments, or when more than one source of pulse-shaped signals are present in a cable system, it is difficult to perform accurate diagnoses. In these cases, an adequate selection of the non-conventional measuring technique and the implementation of effective signal processing tools are essential for a correct evaluation of the insulation degradation. Once a specific noise rejection filter is applied, many signals can be identified as potential PD pulses, therefore, a classification tool to discriminate the PD sources involved is required. This paper proposes an efficient method for the classification of PD signals and pulse-type noise interferences measured in power cables with HFCT sensors. By using a signal feature generation algorithm, representative parameters associated to the waveform of each pulse acquired are calculated so that they can be separated in different clusters. The efficiency of the clustering technique proposed is demonstrated through an example with three different PD sources and several pulse-shaped interferences measured simultaneously in a cable system with a high frequency current transformer (HFCT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new feature representation method based on the construction of a Confidence Matrix (CM). This representation consists of posterior probability values provided by several weak classifiers, each one trained and used in different sets of features from the original sample. The CM allows the final classifier to abstract itself from discovering underlying groups of features. In this work the CM is applied to isolated character image recognition, for which several set of features can be extracted from each sample. Experimentation has shown that the use of CM permits a significant improvement in accuracy in most cases, while the others remain the same. The results were obtained after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest Neighbor rule as a weak classifier and by applying statistical significance tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic fluid hyperthermia (MFH) is considered a promising therapeutic technique for the treatment of cancer cells, in which magnetic nanoparticles (MNPs) with superparamagnetic behavior generate mild-temperatures under an AC magnetic field to selectively destroy the abnormal cancer cells, in detriment of the healthy ones. However, the poor heating efficiency of most NMPs and the imprecise experimental determination of the temperature field during the treatment, are two of the majors drawbacks for its clinical advance. Thus, in this work, different MNPs were developed and tested under an AC magnetic field (~1.10 kA/m and 200 kHz), and the heat generated by them was assessed by an infrared camera. The resulting thermal images were processed in MATLAB after the thermographic calibration of the infrared camera. The results show the potential to use this thermal technique for the improvement and advance of MFH as a clinical therapy.