947 resultados para Chemical oxygen demand


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: To assess the safety and cardiopulmonary adaptation to high altitude exposure among patients with coronary artery disease. METHODS: 22 patients (20 men and 2 women), mean age 57 (SD 7) years, underwent a maximal, symptom limited exercise stress test in Bern, Switzerland (540 m) and after a rapid ascent to the Jungfraujoch (3454 m). The study population comprised 15 patients after ST elevation myocardial infarction and 7 after a non-ST elevation myocardial infarction 12 (SD 4) months after the acute event. All patients were revascularised either by percutaneous coronary angioplasty (n = 15) or by coronary artery bypass surgery (n = 7). Ejection fraction was 60 (SD 8)%. beta blocking agents were withheld for five days before exercise testing. RESULTS: At 3454 m, peak oxygen uptake decreased by 19% (p < 0.001), maximum work capacity by 15% (p < 0.001) and exercise time by 16% (p < 0.001); heart rate, ventilation and lactate were significantly higher at every level of exercise, except at maximum exertion. No ECG signs of myocardial ischaemia or significant arrhythmias were noted. CONCLUSIONS: Although oxygen demand and lactate concentrations are higher during exercise at high altitude, a rapid ascent and submaximal exercise can be considered safe at an altitude of 3454 m for low risk patients six months after revascularisation for an acute coronary event and a normal exercise stress test at low altitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND The use of ultrathin Doppler angioplasty guidewires has made it possible to measure collateral flow quantitatively. Pharmacologic interventions have been shown to influence collateral flow and, thus, to affect myocardial ischaemia. METHODS Twenty-five patients with coronary artery disease undergoing PTCA were included in the present analysis. Coronary flow velocities were measured in the ipsilateral (n = 25) and contralateral (n = 6; two Doppler wires) vessels during PTCA with and without i.v. adenosine (140 microg/kg.min) before and 3 min after 5 mg metoprolol i.v., respectively. The ipsilateral Doppler wire was positioned distal to the stenosis, whereas the distal end of the contralateral wire was in an angiographically normal vessel. The flow signals of the ipsilateral wire were used to calculate the collateral flow index (CFI). CFI was defined as the ratio of flow velocity during balloon inflation divided by resting flow. RESULTS Heart rate and mean aortic pressure decreased slightly (ns) after i.v. metoprolol. The collateral flow index was 0.25+/-0.12 (one fourth of the resting coronary flow) during the first PTCA and 0.27+/-0.14 (ns versus first PTCA) during the second PTCA, but decreased with metoprolol to 0.16+/-0.08 (p<0.0001 vs. baseline) during the third PTCA. CONCLUSIONS Coronary collateral flow increased slightly but not significantly during maximal vasodilatation with adenosine but decreased in 23 of 25 patients after i.v. metoprolol. Thus, there is a reduction in coronary collateral flow with metoprolol, probably due to an increase in coronary collateral resistance or a reduction in oxygen demand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS CO₂ is an intrinsic vasodilator for cerebral and myocardial blood vessels. Myocardial vasodilation without a parallel increase of the oxygen demand leads to changes in myocardial oxygenation. Because apnoea and hyperventilation modify blood CO₂, we hypothesized that voluntary breathing manoeuvres induce changes in myocardial oxygenation that can be measured by oxygenation-sensitive cardiovascular magnetic resonance (CMR). METHODS AND RESULTS Fourteen healthy volunteers were studied. Eight performed free long breath-hold as well as a 1- and 2-min hyperventilation, whereas six aquatic athletes were studied during a 60-s breath-hold and a free long breath-hold. Signal intensity (SI) changes in T₂*-weighted, steady-state free precession, gradient echo images at 1.5 T were monitored during breathing manoeuvres and compared with changes in capillary blood gases. Breath-holds lasted for 35, 58 and 117 s, and hyperventilation for 60 and 120 s. As expected, capillary pCO₂ decreased significantly during hyperventilation. Capillary pO₂ decreased significantly during the 117-s breath-hold. The breath-holds led to a SI decrease (deoxygenation) in the left ventricular blood pool, while the SI of the myocardium increased by 8.2% (P = 0.04), consistent with an increase in myocardial oxygenation. In contrast, hyperventilation for 120 s, however, resulted in a significant 7.5% decrease in myocardial SI/oxygenation (P = 0.02). Change in capillary pCO₂ was the only independently correlated variable predicting myocardial oxygenation changes during breathing manoeuvres (r = 0.58, P < 0.01). CONCLUSION In healthy individuals, breathing manoeuvres lead to changes in myocardial oxygenation, which appear to be mediated by CO₂. These changes can be monitored in vivo by oxygenation-sensitive CMR and thus, may have value as a diagnostic tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100-595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March-June 2008) to open-water conditions in summer (June-August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 µm) varied significantly among sites (1.2-6.4 g C/m**2 in spring, 1.1-12.6 g C/m**2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9-33.2 mg C/m**2/day in spring, 11.6-44.4 mg C/m**2/day in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediments off northwest Africa were assayed for activities of the respiratory electron transport system (ETS) and for primary amino nitrogen. ETS activities were used to compute respiratory oxygen consuption, carbon oxidation, and nitrate reduction rates. Activities were correlated with depth of the water column, and their longshore distribution resembled that of euphotic zone phytoplankton productivity. Protein concentrations were closely correlated with ETS activities. Carbon biomass was calculated from protein and compared with other computed values. The carbon oxidation rate accounted for 13 % of the region's primary production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.