925 resultados para Centric fusion
Resumo:
Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.
Resumo:
This work presents a method of information fusion involving data captured by both a standard CCD camera and a ToF camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time of light information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localization. Further development of these methods will make it possible to identify objects and their position in the real world, and to use this information to prevent possible collisions between the robot and such objects.
Resumo:
This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.
Resumo:
Regional climate downscaling has arrived at an important juncture. Some in the research community favour continued refinement and evaluation of downscaling techniques within a broader framework of uncertainty characterisation and reduction. Others are calling for smarter use of downscaling tools, accepting that conventional, scenario-led strategies for adaptation planning have limited utility in practice. This paper sets out the rationale and new functionality of the Decision Centric (DC) version of the Statistical DownScaling Model (SDSM-DC). This tool enables synthesis of plausible daily weather series, exotic variables (such as tidal surge), and climate change scenarios guided, not determined, by climate model output. Two worked examples are presented. The first shows how SDSM-DC can be used to reconstruct and in-fill missing records based on calibrated predictor-predictand relationships. Daily temperature and precipitation series from sites in Africa, Asia and North America are deliberately degraded to show that SDSM-DC can reconstitute lost data. The second demonstrates the application of the new scenario generator for stress testing a specific adaptation decision. SDSM-DC is used to generate daily precipitation scenarios to simulate winter flooding in the Boyne catchment, Ireland. This sensitivity analysis reveals the conditions under which existing precautionary allowances for climate change might be insufficient. We conclude by discussing the wider implications of the proposed approach and research opportunities presented by the new tool.
Resumo:
We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.
Resumo:
This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.
Resumo:
Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
Resumo:
While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.
Resumo:
The placenta of mammals is a structure formed by the juxtaposition of the fetal membranes and the maternal tissues. The main function of the placenta is to regulate the physiological interchange between the fetus and the mother as well as to operate as an important endocrine organ during the gestation. The placentomal fusions were characterized throughout gestation of cattle using macroscopic, histological and flow cytometry analyses. Analyzing the cell cycle phases with a flow cytometry, a balance between the G2M phase and apoptosis was observed, suggesting that the placentomal fusions do not interfere in the placentary maturation process, which is a pre-requirement for the fetal-maternal disconnection and the release of fetal membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gymnotus cf. carapo and Gynznotus sylvius are two fish species inhabiting the Upper Parana River Basin, presenting respectively 2n =54 and 2n = 40 chromosomes. In the present cytogenetic analysis, R-banding and telomere-sequence hybridization were carried out in order to determine the possible relationship between the karyotipes of these two species. Incorporation bands (R-bands) obtained for the two species allowed the identification of chromosome similarities, showing to be an usefull alternative to the G-banding methods, which fail in producing satisfying results in most of analyzed fish species. This approach, associated with the hybridization of telomeric sequences, permited to identify chromosomal rearrangements that could be used as indicators of karyotypic evolution within the group. In the present case, telomeric sequences were detected in the centromeric region of two metacentric chromosome pairs of Gymnotus sylvius. The results obtained after hybridization with the telomere sequences, coupled with the chromosome homeologies detected by R-banding, showed that G. cf carapo and G. sylvius should present a common ancestor, and this may also be corroborated by the similarities found in three chromosome pairs, that seem to have been conserved during the evolution of the two species. Based on the data here presented we propose that G. sylvius may have undergone a recent process of chromosome fusion that resulted in the diminution of its chromosome number.
Resumo:
Caspases are central players in proteolytic pathways that regulate cellular processes Such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAH15 as a novel caspase Substrate in a trial Study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence (106)DQPD/Y(110) as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells. (C) 2009 Elsevier Inc. All rights reserved.