946 resultados para Cathodic cage. Iron nitride film. Saturation magnetization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative determinations of the hydrogen content and its profile in silicon nitride sensitive films by the method of resonant nuclear reaction have been carried out. At a deposition temperature of 825-degrees-C, hydrogen exists in an LPCVD silicon nitride sensitive film and the hydrogen content on its surface is in the range (8-16) x 10(21) cm-3, depending on the different deposition processes used. This hydrogen content is larger than the (2-3) x 10(21) cm-3 in its interior part, which is homogeneous. Meanwhile, we observe separate peaks for the chemical bonding configurations of Si-H and N-H bonds, indicated by the infrared absorption bands Si-O (1106 cm-1), N-H (1200 cm-1), Si-H-3 (2258 cm-1) and N-H-2 (3349 cm-1), respectively. The worse linear range of the ISFET is caused by the presence of oxygen on the surface of the silicon nitride sensitive film. The existence of chemical bonding configurations of Si-H, N-H and N-Si on its surfaces is favourable for its pH response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The film by tetraphenylporphyrin((TPP)H-2) vapor deposition on iron was investigated by means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of(TPP)H-2 was gained directly from the deposited samples. N(1s) binding energy of the surface was greatly changed after the deposited sample was washed with solvent. It is indicated that the deposited film is composed of an outer-layer of physically adsorbed (TPP)H-2, and an inner-layer of chemically modified (TPP)H-2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dicyano-bis(1,10-phenanthroline)iron(II) modified elecrode was prepared. The voltammetric and the spectroelectrochemical behavior of this electrode were investigated. The influence of pH and the amount of Nafion and dicyano-bis(1,10-phenanthroline) iron(II) (DBPI) used in the electrode preparation on the electrochemical behavior is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17 ± 0.05 nM (n = 14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10–70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52–6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β′Fe3+3(NN)β′Fe3+(NN)3 increased linearly with increasing pH according to log β′Fe3+3(NN)=2.4±0.6×pH+11.9±3.5log β′Fe3+(NN)3=2.4±0.6×pH+11.9±3.5 (salinity = 2.9, T = 20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2 ± 4.1 nM equivalent of Fe(III) to 336.2 ± 19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe3+, varied from 21.1 ± 0.2 to 22.8 ± 0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report magnetic data of free standing films of poly( aniline) (PANI) protonated with a plasticizing di-ester of succinic acid. The data have been obtained using the electron spin resonance (ESR) technique at two different frequencies, X-band (9.4 GHz) and Q-band ( 34 GHz), on one hand, and by magnetization measurements in broad ranges of temperatures and magnetic fields on the other hand. All the data can be explained assuming a transition as a function of temperature from delocalized magnetic moments in the valence band to localized positive polarons in several antiferromagnetically correlated bands. By increasing the magnetic field, the magnetic properties are affected in several ways. An intra-band admixture of states occurs; it contributes to increase the spins' localization and finally promotes an antiferromagnetic-metamagnetic transition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phase equilibria in the FeO-Fe2O3-ZnO system have been experimentally investigated at oxygen partial pressures between metallic iron saturation and air using a specially developed quenching technique, followed by electron probe X-ray microanalysis (EPMA) and then wet chemistry for determination of ferrous and ferric iron concentrations. Gas mixtures of H-2, N-2, and CO2 or CO and CO2 controlled the atmosphere in the furnace. The determined metal cation ratios in phases at equilibrium were used for the construction of the 1200 degrees C isothermal section of the Fe-Zn-O system. The univariant equilibria between the gas phase, spinel, wustite, and zincite was found to be close to pO(2) = 1 center dot 10(-8) atm at 1200 degrees C. The ferric and ferrous iron concentrations in zincite and spinel at equilibrium were also determined at temperatures from 1200 degrees C to 1400 degrees C at pO(2) = 1 center dot 10(-6) atm and at 1200 degrees C at pO(2) values ranging from 1 center dot 10(-4) to 1 center dot 10(-8) atm. Implications of the phase equilibria in the Fe-Zn-O system for the formation of the platelike zincite, especially important for the Imperial Smelting Process (ISP), are discussed.