880 resultados para CRYSTAL SILICON CANTILEVERS
Resumo:
We show that close to monodisperse crystalline fibrils of dibenzylidene sorbitol can be obtained by preparation in a polymeric solvent subjected to extended shear flow.
Resumo:
A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
The diffusion of interstitial oxygen In silicon at 525 degrees C is studied using time-of-flight small-angle neutron scattering (SANS) to separate the elastic scattering from oxygen-containing aggregates from the inelastic scattering from neutron-phonon interactions. The growth of oxygen-containing aggregates as a function of time gives a diffusion coefficient, D, calculated from Ham's theory, that is I factor of similar to 3.8 +/- 1.4 times higher than that expected by extrapolation of higher and lower temperature data (D = 0.13 exp(-2.53 eV kT(-1)) cm(2) s(-1)). This result confirms previous observations of enhanced diffusion at intermediate temperatures (400 degrees C-650 degrees C) although the magnitude of the enhancement we find is Much smaller than that reported by some others.
Energy separation of neutrons scattered at small angles from silicon using time-of-flight techniques
Resumo:
The time-of-flight technique is used on a small-angle neutron scattering instrument to separate the energies of the scattered neutrons, in order to determine the origin of the temperature-dependent scattering observed from silicon at Q > similar to 0.1 angstrom(-1). A quantitative analysis of the results in comparison with the phonon dispersion curves, determined by Dolling using a triple-axis neutron spectrometer, shows that the temperature-dependent scattering can be understood in terms of Umklapp processes whereby neutrons gain energy from phonons.
Resumo:
The difference between cirrus emissivities at 8 and 11 μm is sensitive to the mean effective ice crystal size of the cirrus cloud, De. By using single scattering properties of ice crystals shaped as planar polycrystals, diameters of up to about 70 μm can be retrieved, instead of up to 45 μm assuming spheres or hexagonal columns. The method described in this article is used for a global determination of mean effective ice crystal sizes of cirrus clouds from TOVS satellite observations. A sensitivity study of the De retrieval to uncertainties in hypotheses on ice crystal shape, size distributions, and temperature profiles, as well as in vertical and horizontal cloud heterogeneities shows that uncertainties can be as large as 30%. However, the TOVS data set is one of few data sets which provides global and long-term coverage. Having analyzed the years 1987–1991, it was found that measured effective ice crystal diameters De are stable from year to year. For 1990 a global median De of 53.5 μm was determined. Averages distinguishing ocean/land, season, and latitude lie between 23 μm in winter over Northern Hemisphere midlatitude land and 64 μm in the tropics. In general, larger Des are found in regions with higher atmospheric water vapor and for cirrus with a smaller effective emissivity.
Resumo:
The infrared spectrum of the stretching fundamentals of SiF2 has been obtained at a resolution of ≈ 0.1 cm−1 using a FTIR spectrometer. The spectrum has been analysed using computer simulation based on a coupled hamiltonian for v1 and v3, giving v1 = 855.01 cm−1 and v3 = 870.40 cm−1. The relative magnitude and sign of the vibrational transition moments has been determined from the ξC13 Coriolis coupling.
Resumo:
Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.
Resumo:
Four foliar and two stem-base pathogens were inoculated onto wheat plants grown in different substrates in pot experiments. Soils from four different UK locations were each treated in three ways: (i) straw incorporated in the field at 10 t ha−1 several months previously; (ii) silicon fertilization at 100 mg L−1 during the experiment; and (iii) no amendments. A sand and vermiculite mix was used with and without silicon amendment. The silicon treatment increased plant silica concentrations in all experiments, but incorporating straw was not associated with raised plant silica concentrations. Blumeria graminis and Puccinia recondita were inoculated by shaking infected plants over the test plants, followed by suitable humid periods. The silicon treatment reduced powdery mildew (B. graminis) substantially in sand and vermiculite and in two of the soils, but there were no effects on the slight infection by brown rust (P. recondita). Phaeosphaeria nodorum and Mycosphaerella graminicola were inoculated as conidial suspensions. Leaf spot caused by P. nodorum was reduced in silicon-amended sand and vermiculite; soil was not tested. Symptoms of septoria leaf blotch caused by M. graminicola were reduced by silicon amendment in a severely infected sand and vermiculite experiment but not in soil or a slightly infected sand and vermiculite experiment. Oculimacula yallundae (eyespot) and Fusarium culmorum (brown foot rot) were inoculated as agar plugs on the stem base. Severity of O. yallundae was reduced by silicon amendment of two of the soils but not sand and vermiculite; brown foot rot symptoms caused by F. culmorum were unaffected by silicon amendment. The straw treatment reduced severity of powdery mildew but did not detectably affect the other pathogens. Both straw and silicon treatments appeared to increase plant resistance to all diseases only under high disease pressure.
Resumo:
Reaction of fac-[ Mo( CO)(3)( NCMe)(3)] with three equivalents of NCCH2(C4H3S- 3) in acetonitrile gives the tris(thiophene- 3- acetonitrile) complex, fac-[Mo(CO)(3){NCCH2(C4H3S-3)}(3)] (1) in 7% yield. Complex 1 crystallizes out in the orthorhombic space group Pnma with a = 12.714( 17), b = 16.41( 2), c = 11.304(16) Angstrom, Z = 4. The structure has crystallographic m symmetry and the metal is in an almost perfect octahedral environment, with a facial arrangement of carbonyl and thiophene- 3- acetonitrile groups. The thiophene rings are disordered.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.