923 resultados para CEREBRAL ENERGY-METABOLISM
Resumo:
RESUME GENERAL Au cours de ces dernières années, le monoxyde d'azote (NO) produit par une famille d'enzymes, les NO synthases (NOS), est apparu comme un effecteur central dans la régulation du système cardiovasculaire et du métabolisme énergétique. Chez l'homme, un défaut de production du NO est associé à des maladies cardiovasculaires et métaboliques comme la résistance à l'insuline ou le diabète de type 2. Ces pathologies se retrouvent chez les souris invalidées pour la NO synthase endothéliale (eN0S-/-) qui présentent non seulement une hypertension mais également une résistance à l'insuline et une dyslipidémie (augmentation des triglycérides et des acides gras libres). Ces anomalies sont étroitement associées et impliquées dans le développement du diabète de type 2. Dans cette étude, nous avons essayé de déterminer à partir du modèle de souris eN0S-/-, l'influence de la eNOS et de son produit, le NO, sur la régulation du métabolisme lipidique intracellulaire. Ainsi, nous avons montré que cette enzyme et le NO régulent directement l'activité β-oxydative des mitochondries isolées du muscle squelettique, du muscle cardiaque et du tissu adipeux blanc. Par ailleurs, dans le muscle de ces souris, le contenu des mitochondries et l'expression des gènes impliqués dans leur biogénèse sont diminués, ce qui suggère que la eNOS et/ou le NO contrôlent également la synthèse de ces organelles. Les mitochondries, via la β-oxydation, sont impliquées dans la production d'énergie à partir des acides gras libres. Dans notre modèle animal, la diminution de la β-oxydation dans le muscle, s'accompagne d'une accumulation des triglycérides intramyocellulaires. Cette accumulation prédispose fortement au développement de la résistance à l'insuline. Les anomalies du métabolisme β-oxydatif favorisent donc probablement l'apparition de la dyslipidémie et le développement de la résistance à l'insuline observées chez les souris eN0S-/-. Cette hypothèse est soutenue par différentes études effectuées chez l'homme et l'animal qui suggèrent qu'une dysfonction mitochondriale peut être à l'origine de la résistance à l'insuline. Ces données récentes et les résultats de ce travail apportent un regard nouveau sur le rôle du NO dans le développement des maladies métaboliques que sont la résistance à l'insuline, le diabète de type 2 et l'obésité. Elles placent aux centres de ces mécanismes une organelle, la mitochondrie, située au carrefour des métabolismes glucidiques et lipidiques. SUMMARY Over the last years, nitric oxide (NO), synthesized by a family of enzymes, the NO synthases, has become a central regulator of the cardiovascular system and energy metabolism. In humans, defective NO production is found in cardiovascular and metabolic diseases such as insulin resistance or type 2 diabetes mellitus. These alterations are also found in knockout mice for the endothelial nitric oxide synthase (eN0S-/-), which are not only hypertensive but also display insulin resistance and dyslipidemia (with increased triglyceride and free fatty acid levels). These pathologic features are tightly linked and involved in the pathogenesis of type 2 DM. In this study, using eN0S-/- mice, we determined the role played by this enzyme and its product, NO, on intracellular lipid metabolism. We show that eNOS and NO directly regulate β-oxidation in mitochondria isolated from skeletal and cardiac muscle as well as white adipose tissue. Furthermore, in the skeletal muscle of these mice, the mitochondrial content and the expression of genes involved in mitochondrial biogenesis are decreased, suggesting that eNOS and/or NO also regulate the synthesis of this intracellular organelle. Mitochondria, through β-oxidation, play a role in energy production from free fatty acids. In our animal model, decreased β-oxidation in skeletal muscle is associated with accumulation of intramyocellular lipids. This increased lipid content plays an important role in the pathogenesis of insulin resistance. Defective β-oxidation, therefore, probably favours the development of insulin resistance and dyslipidemia as seen in these animals. This hypothesis is strengthened by studies in humans and animals indicating that mitochondrial dysfunction is associated with insulin resistance. These recent data and the results of this work provide evidence for a role of NO in the development of metabolic diseases such as insulin resistance or type diabetes mellitus. They put as a central player, an organelle, the mitochondria, which lies at the crossway of carbohydrate and lipid metabolism. RESUME DIDACTIQUE Le maintien des fonctions vitales et l'accomplissement d'une activité physique nécessitent, chez l'homme, un apport quotidien d'énergie. Cette énergie est présente, dans l'alimentation, principalement sous forme de graisses (lipides) ou de sucres. La production d'énergie s'effectue en majorité dans le muscle au niveau d'une organelle particulière, la mitochondrie. La régulation du métabolisme énergétique fait intervenir de nombreux facteurs de régulation dont l'un des plus connu est l'insuline. De nombreuses maladies comme le diabète de type 2, l'obésité ou le syndrome métabolique découlent de la dérégulation du métabolisme énergétique. Un mécanisme particulier, la résistance à l'insuline, qui se caractérise par un défaut d'action de l'insuline au niveau de ses tissus cibles (foie, muscle...) est souvent impliqué dans le développement de ces pathologies. L'étude de ces anomalies métaboliques nécessite l'utilisation de modèles, notamment animaux, qui ont la particularité de reproduire partiellement un état pathologique caractéristique de certaines maladies humaines. Dans ce travail, nous avons utilisé un modèle de souris dont la particularité est de ne pas exprimer une enzyme, la monoxyde d'azote (NO) synthase endothéliale (eNOS), responsable de la synthèse d'un gaz, le NO. Ces souris présentent une hypertension artérielle, des anomalies du métabolisme des lipides et une résistance à l'insuline. Or, de récents travaux effectués chez l'homme montrent que des individus insulino-résistants ou diabétiques de type 2 ont une diminution de la production de NO. Lors de nos investigations, nous avons démontré que la quantité et la capacité des mitochondries à utiliser les lipides comme substrat énergétique est diminuée dans les muscles des souris eN0S-/-. Par ailleurs, ces deux anomalies sont associées dans ce tissu à une accumulation des lipides. De façon très intéressante, ce phénomène est décrit dans de nombreuses études effectuées chez l'homme et l'animal comme favorisant le développement de la résistance à l'insuline. Les résultats de ce travail suggèrent donc que la eNOS et/ou le NO joue un rôle important dans l'activité et la synthèse des mitochondries. Le NO pourrait donc constituer une cible thérapeutique dans le traitement des maladies métaboliques.
Resumo:
OBJECTIVE: To study the relationship between the energy expenditure for activity (EEAct), the level of activity and adiposity in a group of 9-year-old boys (n = 28) with different body composition (body weight, 38 +/- 10 kg [range, 23 to 66 kg]; fat mass, 23% +/- 10% [range, 8% to 42%]). METHODS: Total energy expenditure (TEE) was measured by means of the heart-rate monitoring method. EEAct was calculated as TEE-(REE+0.1 TEE), where REE is the postabsorptive resting energy expenditure and 0.1 TEE corresponds to the postprandial thermogenesis (approximately 10% of TEE). RESULTS: TEE, REE, and EEAct were 9388 +/- 1859, 5154 +/- 642, and 3295 +/- 1356 l J/day, respectively. Daily time devoted to sedentary and nonsedentary activities averaged 290 +/- 155 minutes (range, 69 to 621) and 534 +/- 150 minutes (range, 180 to 783), respectively. Time spent on sedentary activities was directly proportional to fat mass percentage (r = 0.46; p < 0.05). It was the only variable, among the free-living physical-activity [EEAct, TEE/(REE+0.1 TEE) ratio, time spent in nonsedentary and sedentary activities] variables, which remained significantly in the multiple step-down regression analysis final equation (r = 0.46; p < 0.05). CONCLUSIONS: The positive relationship between adiposity and time spent on sedentary activities in 9-year-old boys suggests the importance of the role played by muscular activity, at least in the maintenance of obesity in childhood. Prepubertal children should be encouraged to spend less time on sedentary activities to treat and prevent their obesity.
Resumo:
Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.
Resumo:
The thermogenic response to a 100 g oral glucose load was measured prospectively (by indirect calorimetry) in three groups of obese subjects: (1) normal glucose tolerance (n = 12, initial weight 86.4 +/- 3.9 kg, BMI 30.4 +/- 1.1 kg/m2; (2) impaired glucose tolerance (n = 8, initial weight 105.3 +/- 7.6 kg, body mass index (BMI) 37.6 +/- 2.9 kg/m2; (3) diabetes (n = 12), initial weight 102.1 +/- 5.3 kg, BMI 36.2 +/- 2.0 kg/m2). The thermogenic response to glucose averaged 6.8 +/- 1.1 and 7.0 +/- 1.0 per cent, in the two non-diabetic obese groups respectively, and was significantly lower in the obese diabetic group (3.1 +/- 0.8 per cent). With the evolution of obesity (i.e. 6 years later), the glucose-induced thermogenesis (GIT) was significantly reduced in the non-diabetic groups (P less than 0.05) to 4.1 +/- 0.8 and 3.0 +/- 1.1 per cent respectively, and was still blunted in the diabetic group (2.1 +/- 0.7 per cent). The decrease in GIT was accompanied by a reduction in glucose tolerance and insulin response with no change in fasting plasma insulin. These effects were observed despite the fact that the body weight of the subject did not change significantly over the 6-year period. It is concluded that the decrease in GIT which accompanies the worsening of glucose tolerance and the occurrence of diabetes is a mechanism which may contribute to maintain the obesity state by a reduction of energy expenditure.
Resumo:
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22 000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.
Resumo:
Cardiac ventricular morphogenesis is a key developmental stage during which the ventricles grow considerably in size, but the transcriptional pathways controlling this process remains poorly understood. 14-3-3_ is a member of a conserved protein family that regulates a wide range of processes such as transcription, apoptosis and proliferation by binding to the phospho-serine/threonine residues of its target proteins. We found that deletion of the Ywhae gene (encoding 14-3-3_) in mice leads to abnormal ventricular morphogenesis and an embryonic cardiomyopathy (Cieslik KA et al, Circ. Res. 2008, abstract). Interestingly, we recently showed in cultured cells that the Ywhae gene is regulated directly by peroxisome proliferator-activated receptor _ (PPAR_) (Brunelli L et al, Circ. Res. 2007), a ligand-inducible nuclear receptor that controls energy metabolism and development. Postnatal cardiac-specific deletion of the Ppard gene in mice causes a lethal dilated cardiomyopathy, but it is still unknown whether PPAR_ regulates genes involved in heart development. We hypothesized that the expression of the Ywhae gene is responsive to PPAR_ during heart development. We confirmed that PPAR_ is expressed in the heart during development, and found higher expression at E10.5 compared to later gestational ages. We showed by immunofluorescence that a PPAR_ agonist (50 _M L-165,041 for 24 hr) upregulates 14-3-3_ in primary cardiomyocytes. We showed that when P19CL6 cells are driven towards cardiomyocyte lineage by dimethyl sulfoxide (DMSO), 14-3-3_ levels increase 4-fold, while L-165,041 treatment increases levels by an additional 50%. Based on previous work in mice (Leibowitz MD et al, FEBS Lett. 2000; Letavernier E et al, J. Am. Soc. Nephrol. 2005), we tested the response of Ywhae to PPAR_ in vivo . We fed 30 mg/kg/day L-165,041 to 14-3-3__/_ adult pregnant mice for 3 days starting at E9.5 and assessed Ywhae mRNA levels in embryonic hearts at E12.5. Baseline mRNA levels in Ywhae_/_ hearts were double that of Ywhae_/ hearts, while L-165,041 upregulated Ywhae mRNA levels in both Ywhae_/_ and Ywhae_/ hearts by 65%. These results indicate that Ywhae responds to PPAR_ in vivo, and suggest that PPAR_ regulates Ywhae during ventricular morphogenesis.
Resumo:
1. The hypermetabolism frequently observed at rest in patients with chronic obstructive pulmonary disease has been attributed to a high cost of breathing. However, measurement of the cost of breathing by the usual hyperventilation procedure is fraught with methodological problems. The purpose of this study was to measure more directly the cost of breathing in a group of ambulatory patients with stable chronic obstructive pulmonary disease. 2. The cost of breathing was calculated as the difference in oxygen consumption measured by indirect calorimetry between spontaneous breathing and noninvasive mechanical ventilation. Inspiratory muscle rest was achieved by negative or positive pressure ventilation and assessed by the recording of surface electromyograms of the diaphragm and parasternal intercostal muscles. 3. Seven tests were performed in six ambulatory patients with stable chronic obstructive pulmonary disease, four tests using positive pressure ventilation and three with negative pressure ventilation. During mechanical ventilation, the electromyographic activity of the diaphragm decreased by 70 +/- 22%, while that of the parasternals was suppressed in four tests, and remained unchanged in three. However, oxygen consumption was only 1.6 +/- 6.2% lower during mechanical ventilation. 4. The cost of breathing measured in this study was therefore much lower than previously published values. Stress was not likely to influence the results, as both the heart rate and plasma catecholamines did not change between spontaneous breathing and mechanical ventilation. These results suggest that the cost of breathing in ambulatory patients with stable chronic obstructive pulmonary disease may be lower than previously estimated.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Resumo:
Body accelerations during human walking were recorded by a portable measuring device. A new method for parameterizing body accelerations and finding the pattern of walking is outlined. Two neural networks were designed to recognize each pattern and estimate the speed and incline of walking. Six subjects performed treadmill walking followed by self-paced walking on an outdoor test circuit involving roads of various inclines. The neural networks were first "trained" by known patterns of treadmill walking. Then the inclines, the speeds, and the distance covered during overground walking (outdoor circuit) were estimated. The results show a good agreement between actual and predicted variables. The standard deviation of estimated incline was less than 2.6% and the maximum of the coefficient of variation of speed estimation is 6%. To the best of our knowledge, these results constitute the first assessment of speed, incline and distance covered during level and slope walking and offer investigators a new tool for assessing levels of outdoor physical activity.
Resumo:
OBJECTIVE: To describe a method to obtain a profile of the duration and intensity (speed) of walking periods over 24 hours in women under free-living conditions. DESIGN: A new method based on accelerometry was designed for analyzing walking activity. In order to take into account inter-individual variability of acceleration, an individual calibration process was used. Different experiments were performed to highlight the variability of acceleration vs walking speed relationship, to analyze the speed prediction accuracy of the method, and to test the assessment of walking distance and duration over 24-h. SUBJECTS: Twenty-eight women were studied (mean+/-s.d.) age: 39.3+/-8.9 y; body mass: 79.7+/-11.1 kg; body height: 162.9+/-5.4 cm; and body mass index (BMI) 30.0+/-3.8 kg/m(2). RESULTS: Accelerometer output was significantly correlated with speed during treadmill walking (r=0.95, P<0.01), and short unconstrained walks (r=0.86, P<0.01), although with a large inter-individual variation of the regression parameters. By using individual calibration, it was possible to predict walking speed on a standard urban circuit (predicted vs measured r=0.93, P<0.01, s.e.e.=0.51 km/h). In the free-living experiment, women spent on average 79.9+/-36.0 (range: 31.7-168.2) min/day in displacement activities, from which discontinuous short walking activities represented about 2/3 and continuous ones 1/3. Total walking distance averaged 2.1+/-1.2 (range: 0.4-4.7) km/day. It was performed at an average speed of 5.0+/-0.5 (range: 4.1-6.0) km/h. CONCLUSION: An accelerometer measuring the anteroposterior acceleration of the body can estimate walking speed together with the pattern, intensity and duration of daily walking activity.
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
The objective of this study was to investigate the relationship between the physical activity (PA) and its related variables under confinement and in free-living conditions in Asian individuals, where no such information presently exists. The subjects consisted of eighty-six Japanese individuals with a mean age of 38+/-12 years. Under confinement in a large respiratory chamber, the energy expenditure (EE) was measured for 24h. In addition, two moderate walking exercises of 30 min each on a horizontal treadmill were assigned. Free-living measurements of 7 days were also performed using a validated accelerometer. The PA level in the chamber (1.47+/-0.11), expressed as a multiple of the basal EE, was lower than that in free-living conditions (1.53+/-0.12) (p<0.001). However, the two values were closely correlated (r=0.744, p<0.001). Conversely, a residual analysis showed a wide variation in the mean difference for both conditions and revealed a significant systematic error (r=-0.548, p<0.001), thus indicating an increased gap with increasing PA levels in free-living conditions. Similar results were obtained following the exclusion of the imposed exercise sessions. In contrast, the daily step counts under both conditions did not show any correlation. The PA level in the chamber (including and excluding imposed walking exercises) is compatible with the PA level in free-living conditions at the group level, although the daily step counts are unrelated. Thus, the PA level in the chamber may provide valuable information to help us achieve a better understanding of human PA in daily life as it is related to behavioral research.
Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men.
Resumo:
The rates of energy expenditure and wholebody protein turnover were determined during a 9-h period in a group of seven men while they received hourly isocaloric meals of high-protein (HP) or high-carbohydrate (HC) content. Their responses to feeding were compared with those to a short period of fasting (15-24 h). The 9-h thermic response to the repeated feeding of HP meals was found to be greater than that to the HC meals (9.6 +/- 0.6% vs 5.7 +/- 0.4% of the energy intake, respectively, means +/- SEM, p less than 0.01). The rate of whole-body nitrogen turnover over 9 h increased from 17.6 +/- 2.2 g on the fasting day to 27.4 +/- 1.4 g during HC feeding (NS) and there was a further increase to 58.2 +/- 5.3 g resulting from HP feeding (p less than 0.001). By using theoretical estimates (based upon ATP requirements) of the metabolic cost of protein synthesis, 36 +/- 9% of the thermic response to HC feeding and 68 +/- 3% of the response to HP feeding could be accounted for by the increases in protein synthesis compared with the fasting state.