874 resultados para CARDIOPULMONARY OXIDATIVE STRESS
Resumo:
The measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine is an increasingly popular marker of in vivo oxidative damage to DNA. A random-sequence 21-mer oligonucleotide 5'-TCA GXC GTA CGT GAT CTC AGT-3' in which X was 8-oxo-guanine (8-oxo-G) was purified and accurate determination of the oxidised base was confirmed by a 32P-end labelling strategy. The lyophilised material was analysed for its absolute content of 8-oxo-dG by several major laboratories in Europe and one in Japan. Most laboratories using HPLC-ECD underestimated, while GC-MS-SIM overestimated the level of the lesion. HPLC-ECD measured the target value with greatest accuracy. The results also suggest that none of the procedures can accurately quantitate levels of 1 in 10(6) 8-oxo-(d)G in DNA.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
Resumo:
There were four principal sections to the work: 1. Investigation of ocular and systemic vascular risk factors in POAG. The principal findings of this work were: a). Glaucoma patients exhibit an anticipatory reaction to the physical stress, similar to subjects at risk for cardiovascular diseases; a blunted BP response and a reduction in ONH blood flow in response to cold provocation was also recorded. b). Silent myocardial ischaemic episodes occurred during peaks in systemic BP and HR. c). Independent of a positive history for cardiovascular diseases, patients suffering from POAG demonstrate a blunt circadian rhythm of the ANS. 2. Assessment of the relationship between vascular and systemic vascular risk factors in GON. The principal findings of this work were: a). POAG patients demonstrate a high sympathetic tonus over a 24-h period. b). POAG patients with lower OBF demonstrate both 24-h systemic BP and HRV abnormalities. c). OBF alterations observed in some glaucoma patients could be either primary or secondary to systemic haemodynamic disturbances and not a consequence of ONH damage. 3. Assessment of the level of systemic anti-oxidant defence in POAG patients. The principal finding of this work was: Patients suffering from POAG demonstrated significantly lower GSH and t-GSH levels than normal controls. 4. Investigation of the effect of treatment with latanoprost 0.005% on visual function and OBF. The findings of this work were: a). Treatment with latanoprost 0.005% resulted in a significant decrease in IOP and increase in OPP. VF damage progression has also been stopped. b). Treatment with latanoprost 0.005% resulted in a significant increase in the OBF parameters measured at the ONH and peripapillary retina levels. Finally, the importance of a clear protocol for managing new POAG cases is highlighted and a clinical conduit is proposed.
Resumo:
Muscle wasting in cancer cachexia is associated with increased levels of malondialdehyde (MDA) in gastrocnemius muscles, suggesting an increased oxidative stress. To determine whether oxidative stress contributes to muscle protein catabolism, an in vitro model system, consisting of C2C12 myotubes, was treated with either 0.2 mM FeSO4, 0.1 mM H2O2, or both, to replicate the rise in MDA content in cachexia. All treatments caused an increased protein catabolism and a decreased myosin expression. There was an increase in the proteasome chymotrypsin-like enzyme activity, while immunoblotting showed an increased expression of the 20S proteasome α-subunits, p42, and the ubiquitin-conjugating enzyme, E214k. These results show that mild oxidative stress increases protein degradation in skeletal muscle by causing an increased expression of the major components of the ubiquitin-proteasome pathway. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This paper presented at the European Meeting of the Society-for-Free-Radical-Research-Europe 2007, discusses the development of novel mass spectrometry methodology to detect post-translational modifications in oxidative stress and disease.
Resumo:
Blood cholesterol levels are not consistently elevated in subjectswith age-related cognitive decline, although epidemiological studies suggest that Alzheimer's disease and cardiovascular diseases share common risk factors. These include the presence of an unusual genetic variant, the APOE4 (apolipoprotein E4) allele, which modulates LDL (low-density lipoproteins) metabolism, increases free radical formation and reduces plasma antioxidant concentrations. Together, these risk factors support a mechanism for increased LDL circulation time and free radical modification of LDL. Plasma oxycholesterols, hydroxylated metabolites of cholesterol, are carried by oxidized LDL, and elevated lipids in mid-life are associated with increased longterm risk of dementia. Although brain cholesterol metabolism is segregated from the systemic circulation, during oxidative stress, plasma oxycholesterols could have damaging effects on BBB (blood-brain barrier) function and consequently on neuronal cells. Cholesterol-lowering drugs such as statins may prevent the modifications to LDL in mid-life and might show beneficial effects in later life. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Vascular dysfunction is one of the major causes of cardiovascular (CV) mortality and increases with age. Epidemiological studies suggest that Mediterranean diets and high nut consumption reduce CV disease risk and mortality while increasing plasma α-tocopherol. Therefore, we have investigated whether almond supplementation can improve oxidative stress markers and CV risk factors over 4 weeks in young and middle-aged men. Healthy middle-aged men (56 ± 5.8 years), healthy young men (22.1 ± 2.9 years) and young men with two or more CV risk factors (27.3 ± 5 years) consumed 50 g almond/day for 4 weeks. A control group maintained habitual diets over the same period. Plasma α-tocopherol/cholesterol ratios were not different between groups at baseline and were significantly elevated by almond intervention with 50 g almond/day for 4 weeks (p < 0.05). Plasma protein oxidation and nitrite levels were not different between groups whereas, total-, HDL- and LDL-cholesterols and triglycerides were significantly higher in healthy middle-aged and young men with CV risk factors but were not affected by intake. In the almond-consuming groups, flow-mediated dilatation (FMD) improved and systolic blood pressure reduced significantly after 50 g almonds/day for 4 weeks, but diastolic blood pressure reduced only in healthy men. In conclusion, a short-term almond-enriched diet can increase plasma α-tocopherol and improve vascular function in asymptomatic healthy men aged between 20 and 70 years without any effect on plasma lipids or markers of oxidative stress. © 2014 Informa UK, Ltd.
Resumo:
'Tissue' transglutaminase (tTG) selectively accumulates in cells undergoing apoptosis both in vivo and in vitro. Considering the central role played by mitochondria in apoptosis, we investigated the relationships existing amongst tTG expression, apoptosis and mitochondrial function. To this aim we studied the mechanisms of apoptosis in a neuronal cell line (SK-N-BE (2)) in which the tTG-expression was driven by a constitutive promoter. Furthermore, a tet-off inducible promoter was also used in 3T3 fibroblastic cells used as control. Both cell lines, when expressing tTG, appeared 'sensitized' to apoptosis. Strikingly, we found major differences in the morphological features of mitochondria among cell lines in the absence of apoptotic stimuli. In addition, these ultrastructural characteristics were associated with specific functional features: (i) constitutively hyperpolarized mitochondria and (ii) increased reactive oxygen intermediates production. Importantly, after mitochondrial-mediated apoptosis by staurosporine, a rapid loss of mitochondrial membrane potential was found in tTG cells only. Taken together, these results seem to suggest that, via hyperpolarization, tTG might act as a 'sensitizer' towards apoptotic stimuli specifically targeted to mitochondria. These results could also be of pathogenetic relevance for those diseases that are characterized by increased tTG and apoptotic rate together with impaired mitochondrial function, e.g. in some neurodegenerative disease.
Resumo:
Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on express ion/activity of the main DDS phase-II- metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxiclation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.
Resumo:
This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 μg/mL) and paucibacillary (0.662±0.123 μg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDTsupervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software. © 2014 Schalcher et al.
Resumo:
Berries contain several bioactive compounds that can protect against oxidative stress. In this study we evaluated the protective effect of different sequential extracts (ethyl acetate, ethanol and water) of seven berry species: bilberry (Vaccinium myrtillus), blackcurrant (Ribes nigrum), elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea), rose hips (Rosa sp.), sea buckthorn (Hippohae rhamnoides) and strawberry (Fragaria × ananassa). The protective effect was tested on human erythrocytes and the antioxidant capacity was also evaluated in vitro by the FRAP assay. In the erythrocyte assay all sea buckthorn extracts were superior in antioxidant effect to other berry extracts. The ethyl acetate extract of bilberries, and the ethanol and water extracts of blackcurrants, also protected the erythrocytes from oxidation. In contrast, water extracts of rose hips, bilberries and strawberries had a pro-oxidant effect on erythrocytes. The water extract of rose hips was superior to the other berry extracts in the FRAP assay. Thus, the results of the erythrocyte assay did not correlate with the results of the FRAP assay, but provided additional insights into the potential protective effects of berry extracts against oxidative stress. © 2012 - IOS Press and the authors. All rights reserved.
Resumo:
Findings on growth regulating activities of the end-product of lipid peroxidation 4-hydroxy-2-nonenal (HNE), which acts as a “second messenger of free radicals”, overlapped with the development of antibodies specific for the aldehyde-protein adducts. These led to qualitative immunochemical determinations of the HNE presence in various pathophysiological processes and to the change of consideration of the aldehyde’s bioactivities from toxicity into cell signalling. Moreover, findings of the HNE-protein adduct in various organs under physiological circumstances support the concept of “oxidative homeostasis”, which implies that oxidative stress and lipid peroxidation are not only pathological but also physiological processes. Reactive aldehydes, at least HNE, could play important role in oxidative homeostasis, while complementary research approaches might reveal the relevance of the aldehydic-protein adducts as major biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Aiming to join efforts in such research activities researchers interacting through the International 4-Hydroxynonenal Club acting within the SFRR-International and through networking projects of the system of the European Cooperation in Science and Technology (COST) carried validation of the methods for lipid peroxidation and further developed the genuine 4-HNE-His ELISA founding quantitative and qualitative methods for detection of 4-HNE-His adducts as valuable tool to study oxidative stress and lipid peroxidation in cell cultures, various organs and tissues and eventually for human plasma and serum analyses [1]. Reference: 1. Weber, Daniela. Lidija, Milkovic. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies. Redox Biol. 2013. 226-233.
Resumo:
Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer’s disease. The transcription factor, Nrf2 (nuclear factor E2-related factor 2) that binds to the antioxidant responsive element (ARE) activates a battery of genes encoding enzymes and factors essential for neuronal survival. We have investigated the hypothesis that a downstream product of cyclooxygenase(COX-2), 15-deoxy-delta (12, 14)-prostagland in J2 (15d-PGJ2) has protective effects by activating the Nrf2 pathway during oxidative stress.Human neuroblastoma cells (SHSY5Y) were differentiated intoneuronal-like cells as described previously (Gimenez-Cassina et al.,2006). SHSY5Y cells were co-treated with 10 mM buthionine sulfoximine (BSO) 7 10 mM 15d-PGJ2. Cell viability was measured by MTT assay and cellular glutathione (GSH) levels were measured after treating cells for0.5-24 hours by GSH recycling assay. Cellular Nrf2 levels were determined by immunoblotting. IL-6 levels were measured by ELISA.15d-PGJ2 alone lowered GSH levels 30min after the treatment(12.870.64 nmol/mg protein) and returned to untreated control levels at 16hours (28.173.6 nmol/mg protein; Po0.01). Compared to intracellular GSH levels in untreated cells (27.871.8 nmol/mg protein) BSO treatment alone significantly decreased GSH (9.672.1 nmol/mg protein;Po0.001) but co-incubation with 15d-PGJ2 for 24 hours prevented the depletion elicited by BSO(21.372.7 nmol/mg protein). Compared to untreated cells BSO treatment decrease dIL-6 secretion (from 0.941.6ng/ml to 0.6971.3ng/ml) and total Nrf2 protein levels (by21%). Co-incubation with15d-PGJ2 for 24 hours with BSO did not change IL-6(0.6771.4ng/ml) or total Nrf2 level at any time point. This study suggests that neuronal toxicity resulting from glutathione depletion canbere stored by the induction of Nrf2-ARE pathway and the role of the Nrf2 signalling merits further investigation in neurodegenerative diseases.
Resumo:
The study was funded by the Association of Anaesthetists of Great Britain and Ireland, the British Journal of Anaesthesia/Royal College of Anaesthetists (PhD studentship award to BM) and the Melville Trust.