937 resultados para CARBOHYDRATE-METABOLISM
Resumo:
Making the switch: Compounds 1 and 2 are used as metabolic markers for NMR detection. When neuronal cells switch to a glycolytic state, an uneven distribution of (13) C in the N-acetyl group results, thus giving a mixture of the metabolites 1 and 2. It is therefore possible to monitor flux through different metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, and the hexosamine biosynthetic pathway, using a single molecule.
Resumo:
The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G-->T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.
Resumo:
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.
Resumo:
The increase in resting energy expenditure (REE) reported in patients with cystic fibrosis (CF) does not necessarily imply an increase in total energy expenditure (TEE). In this study REE was assessed with open-circuit indirect calorimetry, and free-living 24-hour TEE with the heart rate method. Thirteen patients with CF, aged 8 to 24 years, with adequate nutritional status and moderately decreased pulmonary function, were studied. They were compared with 13 healthy control subjects matched for gender, age, height, and nutritional status. Resting energy expenditure was higher in patients with CF (1512 +/- 88 kcal/day) than in control subjects (1339 +/- 76 kcal/day; p less than 0.01), whereas free-living 24-hour TEE (2345 +/- 127 kcal/day and 2358 +/- 256 kcal/day, respectively) and net mechanical work efficiency of walking on a treadmill (20.4 +/- 0.7% and 19.8 +/- 0.6%, respectively) were similar. Respiratory quotient was higher in patients with CF than in control subjects at rest (0.834 +/- 0.009 vs 0.797 +/- 0.008; p less than 0.05), and tended to remain so during physical exercise, indicating a higher contribution of carbohydrate oxidation to energy expenditure. We conclude that in free living conditions, patients with CF can compensate for their increase in REE by a reduction in spontaneous physical activities or other yet undefined mechanisms.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Resumo:
OBJECTIVE: To investigate the relationships between diet composition, body composition, and macronutrient oxidation at rest in obese and non-obese children. DESIGN: Cross-sectional study on fat intake, adiposity and postabsorptive macronutrients oxidation rates. SUBJECTS: 82 prepubertal (age: 9.1 +/- 1.1 y) children, 30 obese (FM = 32.6 +/- 6.1%) and 52 non-obese (FM = 15.6 +/- 5.1%). MEASUREMENTS: Subcutaneous skinfold thickness for body composition, diet history for energy and nutrient intake, indirect calorimetry for resting metabolic rate (RMR) and RQ measurement. RESULTS: Energy intake (EI) was comparable in obese and non-obese children. Adjusted for RMR by ANCOVA, using RMR as the covariate, EI was significantly lower in obese than in non-obese children indicating either a blunted physical activity or a systematic underestimation of EI. Protein and carbohydrate intakes expressed as a percentage of total energy intake (%EI) were not significantly different in the two groups. Lipid intake (%EI) was slightly but significantly higher in the obese than in the non-obese group either unadjusted or adjusted for RMR by ANCOVA. The postabsorptive RQ was significantly lower in obese than in non-obese children. In the total group, %FM was weakly but significantly correlated to lipid intake (%EI). CONCLUSION: Obese prepubertal children have a higher relative fat intake than non-obese children and their FM is associated with this factor. The lower postabsorptive RQ of obese children may indicate a compensatory mechanism to achieve fat equilibrium by enhanced fat oxidation.
Resumo:
We have described previously a transcription-dependent induction of glycogen resynthesis by the vasoactive intestinal peptide (VIP) or noradrenaline (NA) in astrocytes, which is mediated by cAMP. Because it has been postulated that the cAMP-mediated regulation of energy balance in hepatocytes and adipocytes is channeled at least in part through the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, we tested the hypothesis that C/EBP isoforms could be expressed in mouse cortical astrocytes and that their level of expression could be regulated by VIP, by the VIP-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP), or by NA. We report in this study that in these cells, C/EBP beta and C/EBP delta are induced by VIP, PACAP, or NA via the cAMP second-messenger pathway. Induction of C/EBP beta and -delta mRNA by VIP occurs in the presence of a protein synthesis inhibitor. Thus, c/ebp beta and c/ebp delta behave as cAMP-inducible immediate-early genes in astrocytes. Moreover, transfection of astrocytes with expression vectors selectively producing the transcriptionally active form of C/EBP beta, termed liver-enriched transcriptional activator protein, or C/EBP delta enhance the glycogen resynthesis elicited by NA, whereas an expression vector producing the transcriptionally inactive form of C/EBP beta, termed liver-enriched transcriptional inhibitory protein, reduces this resynthesis. These results support the idea that C/EBP beta and -delta regulate gene expression of energy metabolism-related enzymes in astrocytes.
Resumo:
OBJECTIVE: To see whether a fat-rich (50%) evening meal promoted fat oxidation and a different spontaneous food intake on the following day at breakfast than a meal with a lower fat content (20%) in 10 prepubertal obese girls. RESEARCH METHODS AND PROCEDURES: The postabsorptive and postprandial (10.5 hours) energy expenditure after a low-fat (LF) (20% fat, 68% carbohydrate, 12% protein) and an isocaloric (2.1 MJ) and isoproteic high-fat (HF; 50% fat, 38% carbohydrate, 12% protein) meal were measured by indirect calorimetry. RESULTS: Fat oxidation was not significantly different after the two meals [LF, 31 +/- 9 vs. HF, 35 +/- 9 g/10.5 hours, p = not significant (NS)]. The girls oxidized 1.8 +/- 0.9 times more fat than that ingested (11.1 grams) with the LF meal vs. 0.3 +/- 0.3 times more fat than that ingested (27.1 grams) with the HF meal (p < 0.001). Carbohydrate oxidation was significantly higher after an LF than an HF meal (39 +/- 12 vs. 29 +/- 9 g/10.5 hours, p < 0,05). At breakfast, the girls spontaneously ingested a similar amount of energy (1.5 +/- 0.7 vs. 1.5 +/- 0.6 MJ, p = NS) and macronutrient proportions (fat, 23% vs. 26%, p = NS; protein, 9% vs. 10%; carbohydrate, 68% vs. 64%,) independently of their having eaten an HF or an LF dinner. DISCUSSION: An HF dinner did not stimulate fat oxidation, and no compensatory effect in spontaneous food intake was observed during breakfast the following morning. Cumulated total fat oxidation after dinner was higher than total fat ingested at dinner, but a much larger negative fat balance was observed after the LF meal. Spontaneous energy and nutrient intakes at breakfast were similar after LF and HF isocaloric, isoproteic dinners. This study points out the lack of sensitivity of short-term fat balance to subsequently readjust fat intake and emphasizes the importance of an LF meal to avoid transient positive fat imbalance.
Resumo:
Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer-messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.
Resumo:
The specificity of human antileishmanial IgG and IgE antibodies to glycosylated antigens of Leishmania chagasi was evaluated. An ELISA was performed with soluble leishmanial antigen (SLA) and a panel of 95 sera including samples from patients with subclinical infection (SC) and visceral leishmaniasis (VL), subjects cured of visceral leishmaniasis (CVL), and from healthy individuals from endemic areas (HIEA). Antileishmanial IgG were verified for 18 (40%) of 45 SC subjects (mean absorbance of 0.49 ± 0.17). All nine sera from VL patients had such antibody (0.99 ± 0.21), while 11 (65%) of 17 CVL individuals were seropositive (0.46 ± 0.05). Only three (12%) of 24 HIEA controls reacted in IgG-ELISA. Antileishmanial IgE was detected in 26 (58%) of 45 SC patients (0.35 ± 0.14), and in all VL patients (0.65 ± 0.29). These antibodies were also detected in 13(76%) of 17 CVL subjects (0.42 ± 0.14) while all HIEA controls were seronegative. There was no correlation between antileishmanial IgG and IgE antibody absorbances. Mild periodate oxidation at acid pH of SLA carbohydrates drastically diminished its antigenicity in both IgG and IgE-ELISA, affecting mainly the antigens of 125, 102, 94, and 63 kDa as demonstrated by western immunoblotting.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
The purpose of this study was to investigate astrocytic oxidative metabolism using 1-(11)C-acetate. 1-(11)C-acetate kinetics were evaluated in the rat somatosensory cortex using a beta-scintillator during different manipulations (test-retest, infraorbital nerve stimulation, and administration of acetazolamide or dichloroacetate). In humans a visual activation paradigm was used and kinetics were measured with positron emission tomography. Data were analyzed using a one-tissue compartment model. The following features supported the hypothesis that washout of radiolabel (k(2)) is because of (11)C-CO(2) and therefore related to oxygen consumption (CMRO(2)): (1) the onset of (11)C washout was delayed; (2)k(2) was not affected by acetazolamide-induced blood flow increase; (3)k(2) demonstrated a significant increase during stimulation in rats (from 0.014+/-0.007 to 0.027+/-0.006 per minute) and humans (from 0.016+/-0.010 to 0.026+/-0.006 per minute); and (4) dichloroacetate led to a substantial decrease of k(2). In the test-retest experiments K(1) and k(2) were very stable. In summary, 1-(11)C-acetate seems a promising tracer to investigate astrocytic oxidative metabolism in vivo. If the washout rate indeed represents the production of (11)C-CO(2), then its increase during stimulation would point to a substantially higher astrocytic oxidative metabolism during brain activation. However, the quantitative relationship between k(2) and CMRO(2) needs to be determined in future experiments.
Resumo:
The aim of the present study was to measure the changes in resting energy expenditure (REE) induced by malaria and to assess to what extent they are related to fever and nutritional status. The REE of 19 Gambian children (mean age +/- SEM, 9 +/- 1 y; weight, 24 +/- 2 kg; expected weight for height 86 +/- 1%) were measured with a hood system at repeated intervals at the onset of malaria crisis (test A), 3 to 4 d after therapy (test B), and 14 to 21 d later (test C). Axillary temperature averaged 39.2 +/- 0.1, 36.6 +/- 0.1, and 36.7 +/- 0.1 degrees C in the tests A, B, and C, respectively. REE in test A was significantly higher than REE in test B (223 +/- 10 versus 174 +/- 8 kJ/kg.d, p less than 0.0001), but in test C (169 +/- 8 kJ/kg.d), it did not differ from that observed in test B. The percentage of increase in REE was significantly correlated with the difference in axillary temperature (r = 0.46, p less than 0.05); the slope of the regression line indicated an increase of 6.9% in REE/degree C of fever. Furthermore, the individual increase in REE/degree C was correlated to the percentage of weight for height of the children (r = 0.54, p less than 0.05), indicating that the child's nutritional status influences the magnitude of the hypermetabolism due to fever. We concluded that Gambian children suffering from an acute episode of malaria have an increase in REE averaging 30%; however, REE promptly returns to baseline value a few days after the beginning of therapy.
Resumo:
High fructose consumption is associated with obesity and characteristics of metabolic syndrome. This includes insulin resistance, dyslipidemia, type II diabetes and hepatic steatosis, the hepatic component of metabolic syndrome. Short term high fructose consumption in healthy humans is considered as a study model to increase intrahepatocellular lipids (IHCL). Protein supplementation added to a short term high fructose diet exerts a protective role on hepatic fat accumulation. Fructose disposal after an acute fructose load is well established. However, fructose disposal is usually studied when a high intake of fructose is ingested. Interaction of fructose with other macronutrients on fructose disposal is not clearly established. We wanted to assess how fructose disposal is modulated with nutritional factors. For the first study, we addressed the question of how would essential amino acid (EAA) supplemented to a high fructose diet have an impact on hepatic fat accumulation? We tried to distinguish which metabolic pathways were responsible for the increase in IHCL induced by high fructose intake and how those pathways would be modulated by EAA. After 6 days of hypercaloric high fructose diet, we observed, as expected an increase in IHCL modulated by an increase in VLDL-triglycerides and an increase in VLDL-13C-palmitate production. When adding a supplementation in EAA, we observed a decrease in IHCL but we could not define which mechanism was responsible for this process. With the second study, we were interested to observe fructose disposal after a test meal that contained lipid, protein and a physiologic dose of fructose co-ingested or not with glucose. When ingested with other macronutrients, hepatic fructose disposal is similar as when ingested as pure fructose. It induced oxidation, gluconeogenesis followed by glycogen synthesis, conversion into lactate and to a minor extent by de novo lipogenesis. When co- ingested with glucose decreased fructose oxidation as well as gluconeogenesis and an increased glycogen synthesis without affecting de novo lipogenesis or lactate. We were also able to observe induction of intestinal de novo lipogenesis with both fructose and fructose co- ingested with glucose. In summary, essential amino acids supplementation blunted increase in hepatic fat content induced by a short term chronic fructose overfeeding. However, EAA failed to improve other cardiovascular risk factors. Under isocaloric condition and in the frame of an acute test meal, physiologic dose of fructose associated with other macronutrients led to the same fructose disposal as when fructose is ingested alone. When co-ingested with glucose, we observed a decrease in fructose oxidation and gluconeogenesis as well as an increased in glycogen storage without affecting other metabolic pathways. - Une consommation élevée en fructose est associée à l'obésité et aux caractéristiques du syndrome métabolique. Ces dernières incluent une résistance à l'insuline, une dyslipidémie, un diabète de type II et la stéatose hépatique, composant hépatique du syndrome métabolique. À court terme une forte consommation en fructose chez l'homme sain est considérée comme un modèle d'étude pour augmenter la teneur en graisse hépatique. Une supplémentation en protéines ajoutée à une alimentation riche en fructose de courte durée a un effet protecteur sur l'accumulation des graisses au niveau du foie. Le métabolisme du fructose après une charge de fructose aiguë est bien établi. Toutefois, ce dernier est généralement étudié quand une consommation élevée de fructose est donnée. L'interaction du fructose avec d'autres macronutriments sur le métabolisme du fructose n'est pas connue. Nous voulions évaluer la modulation du métabolisme du fructose par des facteurs nutritionnels. Pour la première étude, nous avons abordé la question de savoir quel impact aurait une supplémentation en acides aminés essentiels (AEE) associé à une alimentation riche en fructose sur l'accumulation des graisses hépatiques. Nous avons essayé de distinguer les voies métaboliques responsables de l'augmentation des graisses hépatiques induite par l'alimentation riche en fructose et comment ces voies étaient modulées par les AEE. Après 6 jours d'une alimentation hypercalorique riche en fructose, nous avons observé, comme attendu, une augmentation des graisses hépatiques modulée par une augmentation des triglycérides-VLDL et une augmentation de la production de VLDL-13C-palmitate. Lors de la supplémentation en AEE, nous avons observé une diminution des graisses hépatiques mais les mécanismes responsables de ce processus n'ont pas pu être mis en évidence. Avec la seconde étude, nous nous sommes intéressés à observer le métabolisme du fructose après un repas test contenant des lipides, des protéines et une dose physiologique de fructose co-ingéré ou non avec du glucose. Lorsque le fructose était ingéré avec les autres macronutriments, le devenir hépatique du fructose était similaire à celui induit par du fructose pur. Il a induit une oxydation, suivie d'une néoglucogenèses, une synthèse de glycogène, une conversion en lactate et dans une moindre mesure une lipogenèse de novo. Lors de la co-ngestion avec du glucose, nous avons observé une diminution de l'oxydation du fructose et de la néoglucogenèse et une augmentation de la synthèse du glycogène, sans effet sur la lipogenèse de novo ni sur le lactate. Nous avons également pu mettre en évidence que le fructose et le fructose ingéré de façon conjointe avec du glucose ont induit une lipogenèse de novo au niveau de l'intestin. En résumé, la supplémentation en acides aminés essentiels a contrecarré l'augmentation de la teneur en graisse hépatique induite par une suralimentation en fructose sur le court terme. Cependant, la supplémentation en AEE a échoué à améliorer d'autres facteurs de risque cardiovasculaires. Dans la condition isocalorique et dans le cadre d'un repas test aiguë, la dose physiologique de fructose associée à d'autres macronutriments a conduit aux mêmes aboutissants du métabolisme du fructose que lorsque le fructose est ingéré seul. Lors de la co-ngestion avec le glucose, une diminution de l'oxydation du fructose est de la néoglucogenèse est observée en parallèle à une augmentation de la synthèse de glycogène sans affecter les autres voies métaboliques.
Resumo:
There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.