834 resultados para CAMERAS
Resumo:
This work presents a method of information fusion involving data captured by both a standard CCD camera and a ToF camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time of light information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localization. Further development of these methods will make it possible to identify objects and their position in the real world, and to use this information to prevent possible collisions between the robot and such objects.
Resumo:
This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.
Resumo:
We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.
Resumo:
The low- and high-latitude boundary layers of the earth's magnetosphere [low-latitude boundary layer (LLBL) and mantle] play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. Optical auroral observation, by photometry and all-sky TV cameras, is a unique technique for investigating the spatial and temporal structure of the electron precipitation associated with such phenomena. However, the distinction between the different boundary layer plasma populations cannot in general be unambiguously determined by optics alone. Additional information, such as satellite observations of particle boundaries and field-aligned currents, is needed in order to identify the plasma source(s) and the magnetosphere-ionosphere coupling mode(s). Two categories of auroral activity/structure in the vicinity of the polar cusp are discussed in this paper, based on combined ground and satellite data. In one case, the quasi-periodic sequence of auroral events at the polar cap boundary involves accelerated electrons (< 1 keV) moving poleward (< 1 km s-1) and azimuthally along the persistent cusp/cleft arc poleward boundary with velocities (< 4 km s-1), comparable to the local ionospheric ion drift during periods of southward IMF. A critical question is whether or not the optical events signify a corresponding plasma flow across the open/closed field line boundary in such cases. Near-simultaneous observations of magnetopause flux transfer events (FTEs) and such optical/ion drift events are reported. The reverse pattern of motion of discrete auroral forms is observed during positive interplanetary magnetic field (IMF) B(Z), i.e. equatorward motion into the cusp/cleft background arc from the poleward edge. Combined satellite and ground-based information for the latter cases indicate a source mechanism, poleward of the cusp at the high-latitude magnetopause or plasma mantle, giving rise to strong momentum transfer and electron precipitation structures within a approximately 200 km-wide latitudinal zone at the cusp/cleft poleward boundary. The striking similarities of auroral electrodynamics in the cleft/mantle region during northward and southward IMF indicate that a qualitatively similar solar wind-magnetosphere coupling mode is operating. It is suggested that, in both cases, the discrete auroral forms represent temporal/spatial structure of larger-scale convection over the polar magnetosphere.
Resumo:
Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.
Resumo:
We present observations of a transient event in the dayside auroral ionosphere at magnetic noon. F-region plasma convection measurements were made by the EISCAT radar, operating in the beamswinging “Polar” experiment mode, and simultaneous observations of the dayside auroral emissions were made by optical meridian-scanning photometers and all-sky TV cameras at Ny Ålesund, Spitzbergen. The data were recorded on 9 January 1989, and a sequence of bursts of flow, with associated transient aurora, were observed between 08:45 and 11:00 U.T. In this paper we concentrate on an event around 09:05 U.T. because that is very close to local magnetic noon. The optical data show a transient intensification and widening (in latitude) of the cusp/cleft region, as seen in red line auroral emissions. Over an interval of about 10 min, the band of 630 nm aurora widened from about 1.5° of invariant latitude to over 5° and returned to its original width. Embedded within the widening band of 630 nm emissions were two intense, active 557.7 nm arc fragments with rays which persisted for about 2 min each. The flow data before and after the optical transient show eastward flows, with speeds increasing markedly with latitude across the band of 630 nm aurora. Strong, apparently westward, flows appeared inside the band while it was widening, but these rotated round to eastward, through northward, as the band shrunk to its original width. The observed ion temperatures verify that the flow speeds during the transient were, to a large extent, as derived using the beamswinging technique; but they also show that the flow increase initially occurred in the western azimuth only. This spatial gradient in the flow introduces ambiguity in the direction of these initial flows and they could have been north-eastward rather than westward. However, the westward direction derived by the beamswinging is consistent with the motion of the colocated and coincident active 557.7 nm arc fragment, A more stable transient 557.7 nm aurora was found close to the shear between the inferred westward flows and the persisting eastward flows to the North. Throughout the transient, northward flow was observed across the equatorward boundary of the 630 nm aurora. Interpretation of the data is made difficult by lack of IMF data, problems in distinguishing the cusp and cleft aurora and uncertainty over which field lines are open and which are closed. However, at magnetic noon there is a 50% probability that we were observing the cusp, in which case from its southerly location we infer that the IMF was southward and many features are suggestive of time-varying reconnection at a single X-line on the dayside magnetopause. This IMF orientation is also consistent with the polar rain precipitation observed simultaneously by the DMSP-F9 satellite in the southern polar cap. There is also a 25% chance that we were observing the cleft (or the mantle poleward of the cleft). In this case we infer that the IMF was northward and the transient is well explained by reconnection which is not only transient in time but occurs at various sites located randomly on the dayside magnetopause (i.e. patchy in space). Lastly, there is a 25% chance that we were observing the cusp poleward of the cleft, in which case we infer that IMF Bz was near zero and the transient is explained by a mixture of the previous two interpretations.
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
Background Access to, and the use of, information and communication technology (ICT) is increasingly becoming a vital component of mainstream life. First-order (e.g. time and money) and second-order factors (e.g. beliefs of staff members) affect the use of ICT in different contexts. It is timely to investigate what these factors may be in the context of service provision for adults with intellectual disabilities given the role ICT could play in facilitating communication and access to information and opportunities as suggested in Valuing People. Method Taking a qualitative approach, nine day service sites within one organization were visited over a period of 6 months to observe ICT-related practice and seek the views of staff members working with adults with intellectual disabilities. All day services were equipped with modern ICT equipment including computers, digital cameras, Internet connections and related peripherals. Results Staff members reported time, training and budget as significant first-order factors. Organizational culture and beliefs about the suitability of technology for older or less able service users were the striking second-order factors mentioned. Despite similar levels of equipment, support and training, ICT use had developed in very different ways across sites. Conclusion The provision of ICT equipment and training is not sufficient to ensure their use; the beliefs of staff members and organizational culture of sites play a substantial role in how ICT is used with and by service users. Activity theory provides a useful framework for considering how first- and second-order factors are related. Staff members need to be given clear information about the broader purpose of activities in day services, especially in relation to the lifelong learning agenda, in order to see the relevance and usefulness of ICT resources for all service users.
Resumo:
The use of Information and Communication Technology (ICT) by adults with learning disabilities has been positively promoted over the past decade. More recently, policy statements and guidance from the UK government have underlined the importance of ICT for adults with learning disabilities specifically, as well as for the population in general, through the potential it offers for social inclusion. The aim of the present study was to provide a picture of how ICT is currently being used within one organisation providing specialist services for adults with learning disabilities and more specifically to provide a picture of its use in promoting community participation. Nine day and 14 residential services were visited as part of a qualitative study to answer three main questions: What kinds of computer programs are being used? What are they being used for? Does this differ between day and residential services? Computers and digital cameras were used for a wide range of activities and ‘mainstream’ programs were used more widely than those developed for specific user groups. In day services, ICT was often embedded in wider projects and activities, whilst use in houses was based around leisure interests. In both contexts, ICT was being used to facilitate communication, although this was more linked to within-service activities, rather than those external to service provision.
Resumo:
This paper addresses the challenging domain of vehicle classification from pole-mounted roadway cameras, specifically from side-profile views. A new public vehicle dataset is made available consisting of over 10000 side profile images (86 make/model and 9 sub-type classes). 5 state-of-the-art classifiers are applied to the dataset, with the best achieving high classification rates of 98.7% for sub-type and 99.7- 99.9% for make and model recognition, confirming the assertion made that single vehicle side profile images can be used for robust classification.
Resumo:
In this paper we propose an innovative approach for behaviour recognition, from a multicamera environment, based on translating video activity into semantics. First, we fuse tracks from individual cameras through clustering employing soft computing techniques. Then, we introduce a higher-level module able to translate fused tracks into semantic information. With our proposed approach, we address the challenge set in PETS 2014 on recognising behaviours of interest around a parked vehicle, namely the abnormal behaviour of someone walking around the vehicle.
Resumo:
This paper describes the dataset and vision challenges that form part of the PETS 2014 workshop. The datasets are multisensor sequences containing different activities around a parked vehicle in a parking lot. The dataset scenarios were filmed from multiple cameras mounted on the vehicle itself and involve multiple actors. In PETS2014 workshop, 22 acted scenarios are provided of abnormal behaviour around the parked vehicle. The aim in PETS 2014 is to provide a standard benchmark that indicates how detection, tracking, abnormality and behaviour analysis systems perform against a common database. The dataset specifically addresses several vision challenges corresponding to different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘simple’ event detection: the behaviour recognition of a single actor) and High-Level Video Analysis (‘complex’ event detection: the behaviour and interaction recognition of several actors).
Resumo:
Activities involving fauna monitoring are usually limited by the lack of resources; therefore, the choice of a proper and efficient methodology is fundamental to maximize the cost-benefit ratio. Both direct and indirect methods can be used to survey mammals, but the latter are preferred due to the difficulty to come in sight of and/or to capture the individuals, besides being cheaper. We compared the performance of two methods to survey medium and large-sized mammal: track plot recording and camera trapping, and their costs were assessed. At Jatai Ecological Station (S21 degrees 31`15 ``- W47 degrees 34`42 ``-Brazil) we installed ten camera traps along a dirt road directly in front of ten track plots, and monitored them for 10 days. We cleaned the plots, adjusted the cameras, and noted down the recorded species daily. Records taken by both methods showed they sample the local richness in different ways (Wilcoxon, T=231; p;;0.01). The track plot method performed better on registering individuals whereas camera trapping provided records which permitted more accurate species identification. The type of infra-red sensor camera used showed a strong bias towards individual body mass (R(2)=0.70; p=0.017), and the variable expenses of this method in a 10-day survey were estimated about 2.04 times higher compared to track plot method; however, in a long run camera trapping becomes cheaper than track plot recording. Concluding, track plot recording is good enough for quick surveys under a limited budget, and camera trapping is best for precise species identification and the investigation of species details, performing better for large animals. When used together, these methods can be complementary.
Resumo:
Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded ( captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others ( e. g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP). Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded (captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others (e.g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP).
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.