946 resultados para Bzip Transcriptional Activator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human malaria parasite Plasmodium falciparum expresses erythrocyte-surface directed variant antigens which are important virulence factors Many are transcribed from multigene families and presumably their mode of expression is strictly controlled to guarantee immune evasion in the human host. In order to elucidate the dynamics of rif transcription and to investigate if rif switching is comparable to var switching we monitored rif variant gene expression in parasites with different cytoadhesive properties as well as after a number of reinvasions. We found identical transcripts in parasite lines with different adhesive phenotypes suggesting that rif genes do not have a critical role in determining the cytoadhesion specificity of infected erythrocytes. We show for the first time that rif genes may show a conserved mode of transcription, maintaining the previously dominant rif transcript in subsequent reinvasions, but also observed rapid switching at rates up to 45% per generation, much higher than for the var gene family. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11) M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caulobacter crescentus sigma(E) belongs to the ECF (extracytoplasmic function) subfamily of RNA polymerase sigma factors, whose members regulate gene expression in response to distinct environmental stresses. During physiological growth conditions, data indicate that sigma(E) is maintained in reduced levels due to the action of ChrR, a negative regulator of rpoE gene expression and function. However, once bacterial cells are exposed to cadmium, organic hydroperoxide, singlet oxygen or UV-A irradiation, transcription of rpoE is induced in a sigma(E)-dependent manner. Site-directed mutagenesis indicated that residue C188 in ChrR is critical for the cadmium response while residues H140 and H142 are required for the bacterial response to organic hydroperoxide, singlet oxygen and UV-A. Global transcriptional analysis showed that sigma(E) regulates genes involved in protecting cells against oxidative damages. A combination of transcriptional start site identification and promoter prediction revealed that some of these genes contain a putative sigma(E)-dependent motif in their upstream regions. Furthermore, deletion of rpoE and two sigma(E)-dependent genes (cfaS and hsp20) impairs Caulobacter survival when singlet oxygen is constantly generated in the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly down-regulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1 alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which hinds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4 Angstrom resolution to a crystallographic residual of 18.6% (R-free =26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and Structural differences are observed in both the domains in the putative Ca2+ and carbohydrate binding regions. (C) 2003 Elsevier B.V. All rights reserved.