900 resultados para Buildings -- Repair an reconstruction -- Contests
Resumo:
Background Lifelong surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms (AAA) is considered mandatory to detect potentially life-threatening endograft complications. A minority of patients require reintervention but cannot be predictively identified by existing methods. This study aimed to improve the prediction of endograft complications and mortality, through the application of machine-learning techniques. Methods Patients undergoing EVAR at 2 centres were studied from 2004-2010. Pre-operative aneurysm morphology was quantified and endograft complications were recorded up to 5 years following surgery. An artificial neural networks (ANN) approach was used to predict whether patients would be at low- or high-risk of endograft complications (aortic/limb) or mortality. Centre 1 data were used for training and centre 2 data for validation. ANN performance was assessed by Kaplan-Meier analysis to compare the incidence of aortic complications, limb complications, and mortality; in patients predicted to be low-risk, versus those predicted to be high-risk. Results 761 patients aged 75 +/- 7 years underwent EVAR. Mean follow-up was 36+/- 20 months. An ANN was created from morphological features including angulation/length/areas/diameters/ volume/tortuosity of the aneurysm neck/sac/iliac segments. ANN models predicted endograft complications and mortality with excellent discrimination between a low-risk and high-risk group. In external validation, the 5-year rates of freedom from aortic complications, limb complications and mortality were 95.9% vs 67.9%; 99.3% vs 92.0%; and 87.9% vs 79.3% respectively (p0.001) Conclusion This study presents ANN models that stratify the 5-year risk of endograft complications or mortality using routinely available pre-operative data.
Resumo:
Purpose - Despite many Maintenance Repair and Overhaul (MRO) organisations alluding their positive business performances to the adoption Lean initiatives, there is a paucity of direct literature that validates this assertion. Thus, the purpose of this paper is to study empirically via the use of an industry-wide survey to establish and extent of Lean adoption and to verify its suitability in mitigating prevalent MRO challenges. Design/methodology/approach - The empirical study contained in this paper is facilitated by an industry-wide survey to collect data from several firms across the MRO spectrum. The analysed responses from industry leaders, professionals and executives synthesised with existing literature was used in ascertaining the extent of Lean adoption within the operational framework of the industry. Findings - The empirical study helped in validating the suitability of Lean in MRO context. However, it was also observed that the focus of its application was skewed towards its production-orientated functions more than its service-orientated functions. Nonetheless, this paper presents results of the positive influence of Lean in MRO context. Research limitations/implications - This empirical study presented in this paper was carried out within a framework of key characteristics of operation. Although this approach is sufficient in assessing the industry's Lean status, further assessment can also be achieved within the context of relevant performance metrics which was not included in this paper. Practical implications - By exploring the industry's Lean status within the context of operational characteristics of operation, this study provides MRO practitioners with more awareness into some of the critical factors required for successful holistic Lean realisation. Social implications - The state-of-the-art of Lean within the aviation MRO context established through this research also contributes to the wider product-centric service environment by providing a platform that facilitates strategy development which ensures Lean success within this environment. Originality/value - Apart from validating the suitability of Lean in MRO contexts, by establishing the extent of Lean adoption within the context of the operational framework, this paper provides a clearer insight as to how successful Lean implementation can be achieved via a holistic implementation strategy balanced between the product-centric and service-centric aspects of the industry.
Resumo:
Aim. To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods. Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results. A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro- Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion. Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.
An investigation of primary human cell sources and clinical scaffolds for articular cartilage repair
Resumo:
Damage to articular cartilage of the knee can be debilitating because it lacks the capacity to repair itself and can progress to degenerative disorders such as osteoarthritis. The current gold standard for treating cartilage defects is autologous chondrocyte implantation (ACI). However, one of the major limitations of ACI is the use of chondrocytes, which dedifferentiate when grown in vitro and lose their phenotype. It is not clear whether the dedifferentiated chondrocytes can fully redifferentiate upon in vivo transplantation. Studies have suggested that undifferentiated mesenchymal stem or stromal cells (MSCs) from bone marrow (BM) and adipose tissue (AT) can undergo chondrogenic differentiation. Therefore, the main aim of this thesis was to examine BM and AT as a cell source for chondrogenesis using clinical scaffolds. Initially, freshly isolated cells were compared with culture expanded MSCs from BM and AT in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™. MSCs were shown to grow better in the three scaffolds compared to freshly isolated cells. BM MSCs in Chondro-Gide® were shown to have increased deposition of cartilage specific extracellular matrix (ECM) compared to AT MSCs. Further, this thesis has sought to examine whether CD271 selected MSCs from AT were more chondrogenic than MSCs selected on the basis of plastic adherence (PA). It was shown that CD271+MSCs may have superior chondrogenic properties in vitro and in vivo in terms of ECM deposition. The repair tissue seen after CD271+MSC transplantation combined with Alpha Chondro Shield® was also less vascularised than that seen after transplantation with PA MSCs in the same scaffold, suggesting antiangiogenic activity. Since articular cartilage is an avascular tissue, CD271+MSCs may be a better suited cell type compared to the PA MSCs. Hence, this study has increased the current understanding of how different cell-scaffold combinations may best be used to promote articular cartilage repair.
Resumo:
This research investigates a new structural system utilising modular construction. Five-sided boxes are cast on-site and stacked together to form a building. An analytical model was created of a typical building in each of two different analysis programs utilising the finite element method (Robot Millennium and ETABS). The pros and cons of both Robot Millennium and ETABS are listed at several key stages in the development of an analytical model utilising this structural system. Robot Millennium was initially utilised but created an analytical model too large to be successfully run. The computation requirements were too large for conventional computers. Therefore Robot Millennium was abandoned in favour of ETABS, whose more simplistic algorithms and assumptions permitted running this large computation model. Tips are provided as well as pitfalls signalled throughout the process of modelling such complex buildings of this type. ^ The building under high seismic loading required a new horizontal shear mechanism. This dissertation has proposed to create a secondary floor that ties to the modular box through the use of gunwales, and roughened surfaces with epoxy coatings. In addition, vertical connections necessitated a new type of shear wall. These shear walls consisted of waffled external walls tied through both reinforcement and a secondary concrete pour. ^ This structural system has generated a new building which was found to be very rigid compared to a conventional structure. The proposed modular building exhibited a period of 1.27 seconds, which is about one-fifth of a conventional building. The maximum lateral drift occurs under seismic loading with a magnitude of 6.14 inches which is one-quarter of a conventional building's drift. The deflected shape and pattern of the interstorey drifts are consistent with those of a coupled shear wall building. In conclusion, the computer analysis indicate that this new structure exceeds current code requirements for both hurricane winds and high seismic loads, and concomitantly provides a shortened construction time with reduced funding. ^
Resumo:
A debate is currently prevalent among the structural engineers regarding the use of cracked versus un-cracked moment of inertia of the structural elements in analyzing and designing tall concrete buildings. (The basic definition of a tall building, according to the Journal of Structural Design of Tall Buildings Vol. 13. No. 5, 2004 is a structure that is equal to or greater than 160 feet in height, or 6 stories or greater.) The controversy is the result of differing interpretations of certain ACI (American Concrete Institute) code provisions. The issue is whether designers should use cracked moment of inertia in order to estimate lateral deflection and whether the computed lateral deflection should be used to carry out subsequent second-order analysis (analysis considering the effect of first order lateral deflections on bending moment and shear stresses). On one hand, bending moments and shear forces estimated based on un-cracked moment of inertia of the sections may result in conservative designs by overestimating moments and shears. On the other hand, lateral deflections may be underestimated due to the same analyses resulting in unsafe designs.
Resumo:
This Ph.D. thesis addresses current issues with ichnotaxonomic practice, and characterizes an exceptionally well preserved ichnological assemblage from the Carboniferous Stainmore Formation, Northumberland, United Kingdom. Samples were collected from closely localized float representative of various units throughout the succession, which was deposited in a storm-dominated marine shoreface. Three dominant ichnotaxa were selected for three-dimensional morphological analysis due to their complicated morphology and/or unclear taxonomic status: 1) Dactyloidites jordii isp. nov.; 2) Beaconites capronus, and; 3) Neoeione moniliformis comb. nov. Using serial grinding and photography, these ichnotaxa were ground and modelled in true colour. High-resolution models of three taxa produced in this study are the basis of the first complete three-dimensional consideration of the traces, and forms the basis for refined palaeobiological and ethological analysis of these taxa. Dactyloidites jordii isp. nov. is a stellate to palmate burrow composed of numerous long, narrow rays that exhibit three orders of branching arranged into tiered galleries radiating from a central shaft. It is considered to be the feeding structure produced by a vermiform organism. Beaconites capronus is a winding trace with distinctly chevron-shaped, meniscate backfill demonstrated herein to backfill the vertical shafts associated with its burrows in a comparable fashion to the horizontal portion of the burrow. This lack of a surface connection would result in the trace making organism being exposed to low-oxygen porewater. Coping with this porewater dysoxia could be approached by burrowing organisms in a number of ways: 1) revisiting the sediment-water interface; 2) creating periodic shafts; or 3) employing anaerobic metabolism. Neoeione moniliformis was originally introduced as Eione moniliformis, however, the genus Eione Tate, 1859 is a junior homonym of Eione Rafinesque, 1814. This led to the transfer of Eione moniliformis to Parataenidium. Through careful examination and three-dimensional characterization of topotypes, the transfer to Parataenidium moniliformis is demonstrated herein to be problematic, as Parataenidium refers to primarily horizontal burrows with two distinct layers and Eione moniliformis is composed of one distinct level. As such, the new ichnogenus Neoeione is created to accommodate Neoeione moniliformis.
Resumo:
The purpose of this research is to investigate the various social, political and economic factors that contributed to Canada’s failure to implement a universal school lunch program during the 1940s. Although Canada developed several other social welfare programs in the post-war period, it remains one of the only industrialized nations that does not provide hot meals to children in elementary or secondary schools. Data from the province of Ontario, a major site of postwar reconstruction and policy-making, has been taken up to inform the broader national discourse on school lunches from the 1940s. National, Ontario provincial and City of Toronto archival records were collected and analyzed according to common themes, in order to identify key barriers that constrained government support of a hot meal program. Archival records were identified using key words, and were limited to materials created between 1930-1952. Analysis suggests that sufficient need for a hot meal program had not been established during the 1940s. Despite misleading nutrition messages, rates of malnutrition and nutrient-related disease were at an all-time low, and many Ontario school boards did not appear to have the necessary infrastructure required to supply all pupils with hot meals. The Canadian government had already employed significant resources to improve existing social security programs by coupling them with health education. This strategy reflected a shift in understanding malnutrition as a knowledge-based problem, as opposed to income-based. This understanding was further reinforced through the moralized dissemination of nutrition information, which placed blame on women for improperly raising their children. Ultimately, the strong uptake of nutrition as a public health issue in Ontario may have limited prospective responses to solutions already utilized in the public health domain, and directed favour away from a universal school lunch program for Canada.
Resumo:
Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.
Resumo:
Objectives CO2-EVAR was proposed for treatment of AAA especially in patients with CKD. Issues regarding standardization, such as visualization of lowest renal artery (LoRA) and quality image in angiographies performed from pigtail or introducer-sheath, are still unsolved. Aim of the study was to analyze different steps of CO2-EVAR to create an operative protocol to standardize the procedure. Methods Patients undergoing CO2-EVAR were prospectively enrolled in 5 European centers (2018-2021). CO2-EVAR was performed using an automated injector. LoRA visualization and image quality (1-4) were analyzed and compared at different procedure steps: preoperative CO2-angiography from Pigtail/Introducer-sheath (1st Step), angiographies from Pigtail at 0%,50%,100% main body (MB) deployment (2nd Step), contralateral hypogastric artery (CHA) visualization with CO2 injection from femoral Introducer-sheath (3rd Step) and completion angiogram from Pigtail/Introducer-sheath (4th Step). Intra-/postoperative adverse events were evaluated. Results Sixty-five patients undergoing CO2-EVAR were enrolled, 55/65(84.5%) male, median age 75(11.5) years. Median ICM was 20(54)cc; 19/65(29.2%) procedures were performed with 0-iodine. 1st Step: median image quality was significantly higher with CO2 injected from femoral introducer [Pigtail2(3)vs.3(3)Introducer,p=.008]. 2nd Step: LoRA was more frequently detected at 50% (93%vs.73.2%, p=.002) and 100% (94.1%vs.78.4%, p=.01) of MB deployment compared with first angiography from Pigtail; image quality was significantly higher at 50% [3(3)vs.2(3),p=<.001] and 100% [4(3) vs.2(3),p=.001] of MB deployment. CHA was detected in 93% cases (3rd Step). Mean image quality was significantly higher when final angiogram (4th Step) was performed from introducer (Pigtail2.6±1.1vs.3.1±0.9Introducer,p=<.001). Rates of intra-/postoperative adverse events (pain,vomit,diarrhea) were 7.7% and 12.5%. Conclusions Preimplant CO2-angiography should be performed from Introducer-sheath. MB steric bulk during its deployment should be used to improve image quality and LoRA visualization with CO2. CHA can be satisfactorily visualized with CO2. Completion CO2-angiogram should be performed from femoral Introducer-sheath. This operative protocol allows to perform CO2-EVAR with minimal ICM and low rate of mild complications.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.
Resumo:
The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.
Reconstruction of bony facial contour deficiencies with polymethylmethacrylate implants: case report
Resumo:
Facial trauma can be considered one of the most serious aggressions found in the medical centers due to the emotional consequences and the possibility of deformity. In craniofacial surgery, the use of autologous bone is still the first choice for reconstructing bony defects or irregularities. When there is a shortage of donor bone or a patient refuses an intracranial operation, alloplastic materials such as polymethylmethacrylate (PMMA) can be used. The PMMA prosthesis can be pre-fabricated, bringing advantages such as reduction of surgical time, easy technical handling and good esthetic results. This paper describes the procedures for rehabilitating a patient with PMMA implants in the region of the face, recovering the facial contours and esthetics of the patient.
Resumo:
Pulp repair is a complex process whose mechanisms are not yet fully understood. The first immune cells to reach the damaged pulp are neutrophils that play an important role in releasing cytokines and in phagocytosis. The objective of this study was to analyze the effect of different pulp-capping materials on the secretion of interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) by migrating human neutrophils. Neutrophils were obtained from the blood of three healthy donors. The experimental groups were calcium hydroxide [Ca(OH)2], an adhesive system (Single Bond), and mineral trioxide aggregate (MTA). Untreated cells were used as control. Transwell chambers were used in performing the assays to mimic an in vivo situation of neutrophil chemotaxis. The pulp-capping materials were placed in the lower chamber and the human neutrophils, in the upper chamber. The cells were counted and the culture medium was assayed using ELISA kits for detecting and quantifying IL-1β and IL8. The data were compared by ANOVA followed by Tukey's test (p < 0.05). The secretion of IL-8 was significantly higher in all groups in comparison to the control group (p < 0.05). The adhesive system group showed higher IL-8 than the MTA group (p < 0.05). The secretion of IL-1β was significantly greater only in the MTA group (p < 0.001). It was concluded that only MTA is able to improve the secretion of IL-1β, and all materials tested increased IL-8 secretion. These results combined with all the other biological advantages of MTA indicate that it could be considered the material of choice for dental pulp capping.