733 resultados para Brick Alentejo
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
The original idea of using a trench for the storing of ensilage seems to have been the outgrowth of the practice long used in several European countries of storing clover and beet tops in pits. Shortly after the World War, western Canada followed by Montana and North Dakota began to use the trench silo. In Nebraska the true trench silo made its appearance about 1925 or 1926. The trench silo as described in this circular, unless lined with some permanent material such as brick, concrete or stone, must be considered a temporary structure which will serve for a few years only and then must be discarded or rebuilt. In an emergency it will save a crop even though the farmer has little capital to expend other than his own labor.
Resumo:
There’s a story that a construction foreman one day noticed one of his workers pushing his wheelbarrow upside down around the work site. “Hey,” the foreman shouted, “turn that thing right side up!” The man with the wheelbarrow looked at him in surprise. “Don’t be silly,” he said. “Every time I do that, they put bricks in it!” I think of that story sometimes, in the midst of these difficult economic times, as our states, its people, and its university, in turn, wrestle with budge cuts. Wouldn’t it be great if we all could just turn our wheelbarrows over and say, “No thanks, no more brick! No more heavy loads to haul!”
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
We report new archeointensity data obtained from the analyses of baked clay elements (architectural and kiln brick fragments) sampled in Southeast Brazil and historically and/or archeologically dated between the end of the XVIth century and the beginning of the XXth century AD. The results were determined using the classical Thellier and Thellier protocol as modified by Coe, including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and the Triaxe protocol, which involves continuous high-temperature magnetization measurements. In both protocols, TRM anisotropy and cooling rate TRM dependence effects were taken into account for intensity determinations which were successfully performed for 150 specimens from 43 fragments, with a good agreement between intensity results obtained from the two procedures. Nine site-mean intensity values were derived from three to eight fragments and defined with standard deviations of less than 8%. The site-mean values vary from similar to 25 mu T to similar to 42 mu T and describe in Southeast Brazil a continuous decreasing trend by similar to 5 mu T per century between similar to 1600 AD and similar to 1900 AD. Their comparison with recent archeointensity results obtained from Northeast Brazil and reduced at a same latitude shows that: (1) the geocentric axial dipole approximation is not valid between these southeastern and northeastern regions of Brazil, whose latitudes differ by similar to 10 degrees, and (2) the available global geomagnetic field models (gufm1 models, their recalibrated versions and the CALSK3 models) are not sufficiently precise to reliably reproduce the non-dipole field effects which prevailed in Brazil for at least the 1600-1750 period. The large non-dipole contribution thus highlighted is most probably linked to the evolution of the South Atlantic Magnetic Anomaly (SAMA) during that period. Furthermore, although our dataset is limited, the Brazilian archeointensity data appear to support the view of a rather oscillatory behavior of the axial dipole moment during the past three centuries that would have been marked in particular by a moderate increase between the end of the XVIIIth century and the middle of the XIXth century followed by the well-known decrease from 1840 AD attested by direct measurements. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study presents the first archeointensity results from Northeast Brazil obtained from 14 groups of architectural brick fragments sampled in the city of Salvador, Bahia State (13 degrees S, 38.5 degrees W) and dated between the middle of the XVIth century and the beginning of the XIXth century. The dating is ascertained by historical documents complemented by archeological constraints, yielding in all cases age uncertainties of less than 50 years. Analyses were carried out using two experimental protocols: 1 the ""zero field-in field"" version of the classical Thellier and Thellier method as proposed by Coe (TT-ZI), including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and 2 the Triaxe procedure involving continuous high temperature magnetization measurements. Both TRM anisotropy and cooling rate effects were taken into account for the intensity determinations. The cooling rate effect was further explored for the TT-ZI protocol using three increasing slow cooling times (5 h, 10 h and 25 h) between 450 C and room temperature. Following archeological constraints, the slowest cooling time was retained in our study, yielding decreases of the raw intensity values by 4% to 14%. For each fragment, a mean intensity was computed and retained only when the data obtained from all specimens (between 2 and 6) satisfied a coherence test at similar to 5%. A total of 57 fragments (183 specimens) was considered for the computations of site-mean intensity values, with derived standard deviations of less than 8% of the corresponding means. When separately computed using the two experimental techniques, the site-mean intensity values always agree to within 5%. A good consistency is observed between intensity values of similar or close ages, which strengthen their reliability. Our data principally show a significant and continuous decrease in geomagnetic field intensity in Northeast Brazil between the first half of the XVIIth century and the XXth century. One result dated to the second half of the XVIth century further suggests that the geomagnetic field intensity reached a maximum around 1600 AD. This evolution is in good agreement with that expected in the city of Salvador from the available global geomagnetic field models. However, the accuracy of these models appears less well constrained between similar to 1550 AD and similar to 1650 AD. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aims of this research were: - To identify the characteristics, properties and provenance of the building and decorative material found in three Hungarian Roman sites: Nagyharsány, Nemesvámos-Balácapuszta and Aquincum - To provide a database of information on the different sites - To have an overview of main conservation strategies applied in Hungary. Geological studies, macroscopical and microscopical observations, XRD investigations, physical and chemical analyses allowed us to define the characteristics and properties of the different kinds of collected materials. Building stones sampled from Nagyharsány site showed two different kinds of massive limestone belonging to the areas surrounding the villa. Also Building stones sampled from Nemesvámos-Balácapuszta Roman villa proved to be compatible with limestone belonging to local sources. Mural painting fragments show that all samples are units composed of multilayered structures. Mosaic tesserae can be classified as following: -Pale yellow , blackish and pink tesserae are comparable with local limestone; -White tessera, composed of marble, was probably imported from distant regions of the Empire, as the usual practice of Romans. Mortars present different characteristics according to the age, the site and the functions: -Building mortars are generally lime based, white or pale yellow in colour, present a high percentage of aggregates represented by fine sand; -Supporting mortars from both mosaics and mural paintings are reddish or pinkish in colour, due to the presence of high percentage of brick dust and tiles fragments, and present a higher content of MgO. Although the condition of the sites, there is an insignificant content of soluble salts. Database The whole study has allowed us to provide work sheets for each samples, including all characteristics and properties. Furthermore, all sites included in the frame of the research have been described and illustrated on the base of their floor plans, material and construction methodologies. It can be concluded that: 1. In Nagyharsány Archaeological site, it is possible to define a sequence of different construction phases on the base of the study of building material and mortars. The results are comparable with the chronology of the site provided by the archaeologists 2. The material used for construction was of local origin while the more precious ones, used for decorative elements, were probably imported from long distance 3. Construction techniques in Hungary mainly refer to the usual Roman knowledge and practice (Vitruvius); few differences have been found 4. The database will represent an archive for Archaeologists, Historians and Conservators dealing with Roman period in Hungary.
Resumo:
The increasing use of Fiber Reinforced methods for strengthening existing brick masonry walls and columns, especially for the rehabilitation of historical buildings, has generated considerable research interest in understanding the failure mechanism in such systems. This dissertation is aimed to provide a basic understanding of the behavior of solid brick masonry walls unwrapped and wrapped with Fiber Reinforced Cementitious Matrix Composites. This is a new type of composite material, commonly known as FRCM, featuring a cementitious inorganic matrix (binder) instead of the more common epoxy one. The influence of the FRCM-reinforcement on the load-carrying capacity and strain distribution during compression test will be investigated using a full-field optical technique known as Digital Image Correlation. Compression test were carried on 6 clay bricks columns and on 7 clay brick walls in three different configuration, casted using bricks scaled respect the first one with a ratio 1:2, in order to determinate the effects of FRCM reinforcement. The goal of the experimental program is to understand how the behavior of brick masonry will be improved by the FRCM-wrapping. The results indicate that there is an arching action zone represented in the form of a parabola with a varying shape according to the used configuration. The area under the parabolas is considered as ineffectively confined. The effectively confined area is assumed to occur within the region where the arching action had been fully developed.
Resumo:
Una delle tecnologie radio che negli ultimi anni ha subito il maggior sviluppo è quella dell’identificazione a radio frequenza (Radio Frequency Identification), utilizzata in un gran numero di ambiti quali la logistica, il tracciamento, l’autenticazione e i pagamenti elettronici. Tra le tecnologie specifiche legate all’RFID si ritrova la Near Field Communication (NFC). Questa è una tecnologia di trasmissione dati a corto raggio che rappresenta un’evoluzione dell’RFID. Una delle caratteristiche dell’NFC è quella di instaurare una comunicazione tra due dispositivi in maniera semplice e intuitiva. L’oggetto che instaura la comunicazione è il Reader, nell’ambito RFID è un dispositivo altamente specializzato, poiché può lavorare a diverse frequenze operative. L’elemento innovativo che ha consentito il successo dell’NFC è il fatto che questa tecnologia possa integrare il Reader in uno strumento di comunicazione di largo uso, ovvero lo smartphone. Questo permette di inizializzare lo scambio dati, sia esso di lettura di un circuito integrato passivo o una trasmissione peer-to-peer, a seguito del naturale gesto di avvicinare lo smartphone. Analisti ed esperti del settore sono convinti del successo dell’NFC, nonostante siano state smentite le attese che vedevano l’NFC integrato in oltre la metà dei cellulari entro il 2010. Tra le molteplici applicazioni NFC in questo elaborato ci si soffermerà in particolare sul cosiddetto Smart Poster. Questo utilizzo può essere molto efficace avendo una gamma di impiego molto vasta. Per l’immagazzinamento dei dati nei Tag o nelle Smart Card si è utilizzato un protocollo d’incapsulamento dati chiamato NDEF (NFC Data Exchange Format) trattato nel capitolo 3 di questa trattazione. Nella seconda parte dell’elaborato si è realizzata una sperimentazione per misurare le distanze di funzionamento di cellulari e Reader per PC. In questo ambito si è realizzato quello che si è definito lo Smart Brick, cioè un mattone che comunica con dispositivi NFC grazie all’installazione di un Tag al suo interno. Si parlerà della realizzazione e degli strumenti software/hardware che hanno permesso di realizzare e programmare questo ”mattone elettronico”.
Resumo:
Pearls are an amazing example of calcium carbonate biomineralization. They show a classic brick and mortar internal structure in which the predominant inorganic part is composed by aragonite and vaterite tablets. The organic matrix is disposed in concentric layers tightly associated to the mineral structures. Freshwater cultivate pearls (FWCPs) and shells nacreous layers of the Chinese mussel Hyriopsis cumingii were demineralized using an ion exchange resin in order to isolate the organic matrix. From both starting materials a soluble fraction was obtained and further analyzed. The major component of the soluble extracts was represented by a similar glycoprotein having a molecular weight of about 48 kDa in pearls and 44 kDa in shells. Immunolocalization showed their wide distribution in the organic sheet surrounding calcium carbonate tablets of the nacre and in the interlamellar and intertabular matrix. These acidic glycoprotein also contained inside the aragonite platelets, are direct regulators during biomineralization processes, participating to calcium carbonate precipitation since the nucleation step. Selective calcium carbonate polymorph precipitation was performed using the two extracts. The polysaccharides moiety was demonstrate to be a crucial factor in polymorphs selection. In particular, the higher content in sugar groups found in pearls extract was responsible of stabilization of the high energetic vaterite during the in vitro precipitation assay; while irregular calcite was obtained using shells protein. Furthermore these polypeptides showed a carbonic anhydrase activity that, even if not directly involved in polymorphs determination, is an essential regulator in CaCO3 formation by means of carbonate anions production. The structural and functional characterization of the proteins included in biocomposites, gives important hints for understanding the complicated process of biomineralization. A better knowledge of this natural mechanism can offer new strategies for producing environmental friendly materials with controlled structures and enhanced chemical-physical features.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Resumo:
This study wants to analyze the effectiveness of different reinforcement typologies for masonry columns, in particular Fiber-Reinforced Polymer (FRP) and FRCM. The behavior of 10 solid – brick columns that are externally wrapped by FRP sheets and 2 unreinforced columns are presented in this study. The specimens are subjected to axial load until failure occurs. Three different confinement schemes were experimentally analyzed in order to evaluate and compare the effectiveness of the proposed strengthening techniques: 1) Grid carbon FRP (CFRP_G); 2) Grid glass FRP (GFRP_G); 3) Uniaxial carbon FRP (CFRP_U). Two different configurations of the reinforcing system were investigated: FRP sheets are applied as external reinforcement along the perimeter of the masonry columns in the form of continuous and discontinuous wrap, respectively. The results, compared with those for un-reinforced columns, indicate an increases in ultimate load, stiffness and ductility.
Resumo:
The assessment of historical structures is a significant need for the next generations, as historical monuments represent the community’s identity and have an important cultural value to society. Most of historical structures built by using masonry which is one of the oldest and most common construction materials used in the building sector since the ancient time. Also it is considered a complex material, as it is a composition of brick units and mortar, which affects the structural performance of the building by having different mechanical behaviour with respect to different geometry and qualities given by the components.
Resumo:
OPERA è un esperimento installato ai Laboratori del Gran Sasso, lungo la linea del fascio di neutrini CNGS prodotto al CERN. Il suo scopo principale è osservare - per la prima volta in modo diretto - il fenomeno dell'oscillazione di neutrini muonici del CNGS, in neutrini-tau. L'esperimento è attualmente in fase di analisi dati. Accanto al canale di oscillazione dominante nu_mu--> nu_tau OPERA può studiare anche il canale nu_mu--> nu_e grazie all'ottima capacità di identificazione degli elettroni. OPERA utilizza un bersaglio attivo, finemente segmentato in moduli ("brick") costituiti da pile di fogli di emulsioni nucleare e lastre di piombo. Ogni "brick", il cui spessore è equivalente a 10 lunghezze di radiazione, è un rivelatore "stand-alone" attraverso il quale è possibile identificare e ricostruire gli sciami elettromagnetici e quindi le interazioni a corrente carica di neutrini elettronici. Il progetto di tesi si inquadra in questo contesto. Gli obiettivi specifici sono: - implementazione di una nuova procedura di trigger applicata per l'identificazione degli sciami elettromagnetici; - validazione della suddetta procedura sui dati simulati.