990 resultados para Boyd, Mike
Resumo:
Rapsyn is a key molecule involved in the formation of postsynaptic specializations at the neuromuscular junction, in its absence there are both pre- and post-synaptic deficits including failure to cluster acety]choline receptors. Recently we have documented increases in both nerve-muscle branching and numbers of motoneurons, suggesting alterations in skeletal muscle derived trophic support for motoneurons. The aim of the present study was to evaluate the contribution of target derived trophic factors to increases in motoneuron branching and number, in rapsyn deficient mice that had their postsynaptic specializations disrupted, We have used reverse transcription-polymerase chain reaction and Western blot to document the expression of known trophic factors and their receptors in muscle, during the period of synapse formation in rapsyn deficient mouse embryos. We found that the mRNA levels for ciliary neurotrophic factor (CNTF) was decreased in the rapsyn deficient muscles compared with litter mate controls although those for NGF, BDNF, NT-3 and TGF-beta2 did not differ. We found that both the mRNA and the protein expression for suppressor of cytokine signaling 3 (SOCS3) decreased although janus kinase 2 (JAK2) did not change in the rapsyn deficient muscles compared with litter mate controls. These results suggest that failure to form postsynaptic specializations in rapsyn deficient mice has altered the CNTF cytokine signaling pathway within skeletal muscle, the target for motoneurons. This alteration may in part, account for the increased muscle nerve branching and motoneuron survival seen in rapsyn deficient mice. (C) 2001 Wiley-Liss, Inc.
Resumo:
We describe the genomic organization of a recently identified CC chemokine, MIP3 alpha /CCL20 (HGMW-approved symbol SCYA20). The MIP-3 alpha /CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISK analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3 alpha /CCL20, Ala MLP-3 alpha /CCL20 and Ser MIP-3 alpha /CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ata MIP-3 alpha /CCL20 or Ser MIP-3 alpha /CCL20. Both forms of MIP-3cr/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-a-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3 alpha /CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3 alpha /CCL20 and Ala MIP-3 alpha /CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known. (C) 2001 Academic Press.
Resumo:
A 250 mum diameter fibre of ytterbium-doped ZBLAN was cooled by 13 K from room temperature. The cooling was performed in vacuum to limit the thermal load on the fibre. 0.85 W of laser light at 1015 nm was coupled into the fibre. The ytterbium ions absorbed this light, and the excited atoms thermalized phononically and on average emitted light at a wavelength of 996 nm. Since the quantum efficiency of the transition was high, this resulted in a net loss of energy from the glass, producing net bulk cooling.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
Bridled nailtail wallabies Onychogalea fraenata are endangered, medium-sized, nocturnal macropodids that persist at only one location in central Queensland, Australia. Characteristics of juvenile development, shelter use, anti-predator behaviour and maternal care were investigated in the wild using trapping, radio-tracking and spotlighting observations., Timing of developmental stages was identical to the pattern previously found in captivity, except for age at weaning which was much earlier in the wild. After young had left the pouch permanently at 17 weeks of age and weighing c. 800 g, they always spent the day concealed in dense cover, generally > 200 m from their mothers. Juveniles were also alone in > 50% of observations at night, and stayed closer to cover than did adult females. Young became independent of their mothers 7-8 weeks after permanent exit from the pouch and weighing c. 1800 g. Females with dependent juveniles changed their behaviour in ways likely to reduce predation on young. They reduced their home ranges, stayed closer to cover and became more wary than other females. Juveniles differed from adult females in their habitat use, anti-predator behaviour and shelter site preferences. Juveniles were more likely than adults to respond to threats by standing still or lying flat on the ground, whether or not they were in concealing cover. Juveniles used a wider range of smaller shelters than adults, and were less likely to use solid shelters such as hollow logs during the day. Because bridled nailtail wallabies have a 'hider' strategy of maternal care and the young rely on crypsis, successful breeding in the wild requires dense vegetation cover.
Resumo:
During the Middle Jurassic, the regional environment of Curio Bay, southeast South Island, New Zealand, was a fluvial plain marginal to volcanic uplands. Intermittent flashy, poorly-confined flood events buried successive conifer forests. With the termination of each flood, soils developed and vegetation was reestablished. In most cases, this developed into coniferous forest. In approximately 40 m of vertical section, 10 fossil forest horizons can be distinguished, highlighting a type of fluvial architecture which is poorly documented. Flood-basin material is minimal, but a short-Lived floodbasin lake is inferred to have developed within the interval of study. Paleocurrent indicators suggest enclosure of the basin on more than one side. Sedimentation style suggests a relatively dry (less than humid but not arid) climate with seasonal rainfall. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
The aim of this article, part of a larger study (Thorley 2000), was to determine and examine the practices which surrounded the initiation of breastfeeding in Queensland maternity hospitals in the postwar period, 1945-1965. Although it was assumed that mothers would breastfeed, and sound advice was available on how to achieve a good latch, the often arbitary delay of the first breastfeed, and consistently restrictive practices surrounding the frequency and duration of the feeds, were not conducive to an optimal start for breastfeeding. Staff shortages compounded the situation. Mothers felt powerless and were commonly not informed about whether their babies were being complemented with pooled breastmilk or artificial infant milk in the central nursery, nor were they asked permission for these to be given to their babies. Pooled breastmilk from the postnatal wards was available throughout this period, though in the latter part of this period there appears to have been an increase in the use of artificial milks.
Resumo:
Brushtail possums, Trichosurus vulpecula Kerr, were experimentally infected with Ross River (RR) or Barmah Forest (BF) virus by Aedes vigilax (Skuse) mosquitoes. Eight of 10 animals exposed to RR virus developed neutralizing antibody, and 3 possums developed high viremia for < 48 hr after infection, sufficient to infect recipient mosquitoes. Two of 10 animals exposed to BF virus developed neutralizing antibody. Both infected possums maintained detectable neutralizing antibody to BF for at least 45 days after infection (log neutralization index > 2.0 at 45 days). Eight possums did not develop neutralizing antibody to BF despite exposure to infected mosquitoes. These results suggest that T. vulpecula may potentially act as a reservoir species for RR in urban areas. However, T. vulpecula infected with BF do not develop viremia sufficient to infect mosquitoes and are unlikely to be important hosts for BF.
Resumo:
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal robes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.
Resumo:
The Eph family (of receptor tyrosine kinases plays a crucial role during development and is implicated in oncogenesis. Using a partial cDNA clone of an Eph-related kinase (Esk) we isolated the complete coding region of a gene which we show to be murine EphA1 by both structural and functional criteria. The chromosomal localization is shown to be syntenic to hEphA1 and the genomic organization also shows distinct features found in the hEphA1 gene. Functionally, in keeping with findings for the human homologue, both soluble recombinant and native mEphA1 show preferential binding to ephrin A1. However, we also observed significant binding to other A-type ligands as has been observed for other Eph receptors. We analysed the expression of mEphA1 mRNA by in situ hybridization on tissue sections. mEphA1 was expressed in epithelial elements of skin, adult thymus, kidney and adrenal cortex. Taken together with previous Northern blotting data these results suggest that mEphA1 is expressed widely in differentiated epithelial cells.
Resumo:
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The contribution of synovial cells to the pathogenesis of rheumatoid arthritis (RA) is only partly understood. Monoclonal antibody (mAb) 1D5 is one of very few mAb ever raised against RA synovial cells in order to study the biology of these cells. Studies on the expression pattern and structural features of the 1D5 Ag suggest that 1D5 recognizes human vascular cell adhesion molecule-1 (VCAM-1), which is an intercellular adhesion molecule. Vascular cell adhesion molecule-1 may be involved in a number of crucial intercellular interactions in RA.
Resumo:
Objective. The aim of this study was to determine the function of primitive hematopoietic stem cells (PHSC) at phases G(0) and G(1) of the cell cycle. Materials and Methods. A combination of supravital dyes rhodamine123 (Rh), Hoechst33342 (Ho), and pyronin (PY) was used to isolate the G(0) and G(1) subsets of PHSC. A competitive repopulation assay was used to evaluate their in vivo function. Results. We confirmed that the Rh(lo)Lin(-)Kit(+)Sca-1(+) PHSC were relatively quiescent when compared with the more mature Rh(hi)Lin(-)Kit(+)Sca-1 HSC and Rh(hi)Lin(-)Kit(+)Sca-1(-) progenitors. In addition, cells with Rh(lo)Lin(-)Kit(+)Sca-1(+), Rh(lo)Ho(lo)Lin(-)Sca-1(+), or Rh(lo)Ho(sp)Lin(-)Sca-1(+) phenotypes identified the same cell population. We further subfractionated the Rh(lo)Ho(lo/sp)Lin(-)Sca-1(+) PHSC using PY into PYlo and PYhi subsets. Limiting dilution analysis revealed that the frequency of long-term in vivo competitive repopulating units (CRU) of the (PYRhHolo/sp)-Rh-lo-Ho-lo PHSC was 1 in 10 cells, whereas there was at least a three-fold lower frequency in those isolated at the G(1) phase (PYhi) We found a dose-dependent PY-mediated cytotoxicity that at moderate concentration affected most of the murine hematopoietic compartment but spared the early HSC compartment. Conclusion. Our data confirm that the HSC compartment is hierarchically ordered on the basis of quiescence and further extend this concept to PY-mediated cytotoxicity. PY supravital dye can be used to reveal functional heterogeneity within the (RhHolosp)-Ho-lo PHSC population but is of limited use in dissecting the relatively more mature hematopoietic stem/progenitor cell population. (C) 2001 International Society for Experimental Hematology. Published by Elsevier Science Inc.