999 resultados para Bone bank
Resumo:
The purpose of the present study was to investigate the effects of low-intensity ultrasound on bioabsorbable self-reinforced poly-L-lactide (SR-PLLA) screws and on fracture healing after SR-PLLA device fixation in experimental and clinical cancellous bone fracture. In the first experimental study, the assessment of the mechanical strengths of the SR-PLLA screws was performed after 12 weeks of daily 20-minute ultrasound exposure in vitro. In the second experimental study, 32 male Wistar rats with an experimental distal femur osteotomy fixed with an SR-PLLA rod were exposed for daily low-intensity ultrasound treatment for 21 days. The effects on the healing bone were assessed. The clinical studies consist of three prospective, randomized, and placebo-controlled series of dislocated lateral malleolar fractures fixed with one SR-PLLA screw. The total number of the patients in these series was 52. Half of the patients were provided randomly with a sham ultrasound device. The patients underwent ultrasound therapy 20 minutes daily for six weeks. Radiological bone healing was assessed both by radiographs at two, six, nine, and 12 weeks and by multidetector computed tomography (MDCT) scans at two weeks, nine weeks, and 18 months. Bone mineral density was assessed by dual-energy X-ray absorptiometry (DXA). The clinical outcome was assessed by both Olerud-Molander scoring and clinical examination of the ankle. Low-intensity ultrasound had no effects on the mechanical properties and degradation behaviour of the SR-PLLA screws in vitro. There were no obvious signs of low-intensity ultrasound-induced enhancement in the bone healing in SR-PLLA-rod-fixed metaphyseal distal femur osteotomy in rats. The biocompatibility of low-intensity ultrasound treatment and SR-PLLA was found to be good. In the clinical series low-intensity ultrasound was observed to have no obvious effects on the bone mineral density of the fractured lateral malleolus. There were no obvious differences in the radiological bone healing times of the SR-PLLA-screw-fixed lateral malleolar fractures after low-intensity ultrasound treatment. Low-intensity ultrasound did not have any effects on radiological bone morphology, bone mineral density or clinical outcome 18 months after the injury. There were no obvious findings in the present study to support the hypothesis that low-intensity pulsed ultrasound enhances bone healing in SR-PLLA-rod-fixed experimental metaphyseal distal femur osteotomy in rats or in clinical SR-PLLA-screw-fixed lateral malleolar fractures. It is important to limit the conclusions of the present set of studies only to lateral malleolar fractures fixed with an SR-PLLA screw.
Resumo:
The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.
Resumo:
Osteoporosis is a skeletal disorder characterized by compromised bone strength that predisposes to increased fracture risk. Childhood and adolescence are critical periods for bone mass gain. Peak bone mass is mostly acquired by the age of 18 years and is an important determinant of adult bone health and lifetime risk for fractures. Medications, especially glucocorticoids (GCs), chronic inflammation, decreased physical activity, hormonal deficiencies, delayed puberty, and poor nutrition may predispose children and adolescents with a chronic disease to impaired bone health. In this work, we studied overall bone health, the incidence and prevalence of fractures in children and adolescents who were treated for juvenile idiopathic arthritis (JIA) or had undergone solid organ transplantation. The first study cohort included 62 patients diagnosed with JIA and treated with GCs. The epidemiology of fractures after transplantation was investigated in 196 patients and a more detailed analysis of bone health determinants was performed on 40 liver (LTx) and 106 renal (RTx) transplantation patients. Bone mineral density (BMD) and vertebral morphology were assessed by dual-energy x-ray absorptiometry. Standard radiographs were obtained to detect vertebral fractures and to determine bone age; BMD values were adjusted for skeletal maturity. Our study showed that median BMD values were subnormal in all patient cohorts. The values were highest in patients with JIA and lowest in patients with LTx. Age at transplantation influenced BMD values in LTx but not RTx patients; BMD values were higher in patients who had LTx before the age of two years. BMD was lowest during the immediate posttransplantation years and increased subnormally during puberty. Delayed skeletal maturation was common in all patient groups. The prevalence of vertebral fractures ranged from 10% to 19% in the cohorts. Most of the fractures were asymptomatic and diagnosed only at screening. Vertebral fractures were most common in LTx patients. Vitamin D deficiency was common in all patient groups, and only 3% of patients with JIA and 25% of transplantation patients were considered to have adequate serum vitamin D levels. The total cumulative weight-adjusted dose of GC was not associated with BMD values in JIA or LTx patients. The combination of female gender and age over 15 years, parathyroid hormone concentration over 100 ng/L, and cumulative weight-adjusted methylprednisolone dose over 150 mg/kg during the three preceding years were found to be important predictors for low lumbar spine BMD in RTx patients. Based on the high prevalence of osteoporosis in the study cohorts more efforts should be put to prevention and early diagnosis of osteoporosis in these pediatric patients.
Resumo:
In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.
Resumo:
Bone stress injuries of the foot have been known for more than 150 years. For a century, their primary diagnostic imaging tool has been radiography. However, currently the golden standard for establishing the diagnosis of stress injuries is magnetic resonance imaging (MRI). Although the injury type has been fairly well documented in the earlier literature, little information is available on the healing of stress injuries located in e.g. the talus and calcaneus. The current study retrospectively evaluated the stress injuries of the foot and ankle treated at the Central Military Hospital over a period of eight years in patients who underwent MRI for stress injury of the foot. The imaging studies of the patients were reevaluated to determine the exact nature of the stress injury. Moreover, the hospital records of the patients were reviewed to determine the healing of stress injuries of the talus and calcaneus. Patients with a stress fracture in the talus were recalled for a follow-up examination and MRI scan one to six years after the initial injury to determine if the fracture had completely healed, clinically and radiologically. The bone stress injuries of the foot were found to affect more than one bone in a majority of the cases. The talus and the calcaneus were the bones most commonly affected. In the talus, the most common site for the injuries was the head of the bone, and in the calcaneus, the posterior part of the bone. The injuries in these bones were associated with injuries in the surrounding bones. Stress injuries in the calcaneus seemed to heal well. No complications were seen in the primary healing process. The patients were, however, sometimes compelled to refrain from physical training for up to months. In the talus, minor degenerative findings of the articular surface were seen in half of the patients who participated in a follow-up MRI scan and radiographs taken one to six years after the initial injury. Half of the patients also reported minor exercise related symptoms in the follow-up. The symptoms were, however, not noticeable in everyday life.
Resumo:
Cord blood is a well-established alternative to bone marrow and peripheral blood stem cell transplantation. To this day, over 400 000 unrelated donor cord blood units have been stored in cord blood banks worldwide. To enable successful cord blood transplantation, recent efforts have been focused on finding ways to increase the hematopoietic progenitor cell content of cord blood units. In this study, factors that may improve the selection and quality of cord blood collections for banking were identified. In 167 consecutive cord blood units collected from healthy full-term neonates and processed at a national cord blood bank, mean platelet volume (MPV) correlated with the numbers of cord blood unit hematopoietic progenitors (CD34+ cells and colony-forming units); this is a novel finding. Mean platelet volume can be thought to represent general hematopoietic activity, as newly formed platelets have been reported to be large. Stress during delivery is hypothesized to lead to the mobilization of hematopoietic progenitor cells through cytokine stimulation. Accordingly, low-normal umbilical arterial pH, thought to be associated with perinatal stress, correlated with high cord blood unit CD34+ cell and colony-forming unit numbers. The associations were closer in vaginal deliveries than in Cesarean sections. Vaginal delivery entails specific physiological changes, which may also affect the hematopoietic system. Thus, different factors may predict cord blood hematopoietic progenitor cell numbers in the two modes of delivery. Theoretical models were created to enable the use of platelet characteristics (mean platelet volume) and perinatal factors (umbilical arterial pH and placental weight) in the selection of cord blood collections with high hematopoietic progenitor cell counts. These observations could thus be implemented as a part of the evaluation of cord blood collections for banking. The quality of cord blood units has been the focus of several recent studies. However, hemostasis activation during cord blood collection is scarcely evaluated in cord blood banks. In this study, hemostasis activation was assessed with prothrombin activation fragment 1+2 (F1+2), a direct indicator of thrombin generation, and platelet factor 4 (PF4), indicating platelet activation. Altogether three sample series were collected during the set-up of the cord blood bank as well as after changes in personnel and collection equipment. The activation decreased from the first to the subsequent series, which were collected with the bank fully in operation and following international standards, and was at a level similar to that previously reported for healthy neonates. As hemostasis activation may have unwanted effects on cord blood cell contents, it should be minimized. The assessment of hemostasis activation could be implemented as a part of process control in cord blood banks. Culture assays provide information about the hematopoietic potential of the cord blood unit. In processed cord blood units prior to freezing, megakaryocytic colony growth was evaluated in semisolid cultures with a novel scoring system. Three investigators analyzed the colony assays, and the scores were highly concordant. With such scoring systems, the growth potential of various cord blood cell lineages can be assessed. In addition, erythroid cells were observed in liquid cultures of cryostored and thawed, unseparated cord blood units without exogenous erythropoietin. This was hypothesized to be due to the erythropoietic effect of thrombopoietin, endogenous erythropoietin production, and diverse cell-cell interactions in the culture. This observation underscores the complex interactions of cytokines and supporting cells in the heterogeneous cell population of the thawed cord blood unit.
Resumo:
Osteoporosis is not only a disease of the elderly, but is increasingly diagnosed in chronically ill children. Children with severe motor disabilities, such as cerebral palsy (CP), have many risk factors for osteoporosis. Adults with intellectual disability (ID) are also prone to low bone mineral density (BMD) and increased fractures. This study was carried out to identify risk factors for low BMD and osteoporosis in children with severe motor disability and in adults with ID. In this study 59 children with severe motor disability, ranging in age from 5 to 16 years were evaluated. Lumbar spine BMD was measured with dual-energy x-ray absorptiometry. BMD values were corrected for bone size by calculating bone mineral apparent density (BMAD), and for bone age. The values were transformed into Z-scores by comparison with normative data. Spinal radiographs were assessed for vertebral morphology. Blood samples were obtained for biochemical parameters. Parents were requested to keep a food diary for three days. The median daily energy and nutrient intakes were calculated. Fractures were common; 17% of the children had sustained peripheral fractures and 25% had compression fractures. BMD was low in children; the median spinal BMAD Z-score was -1.0 (range -5.0 – +2.0) and the BMAD Z-score <-2.0 in 20% of the children. Low BMAD Z-score and hypercalciuria were significant risk factors for fractures. In children with motor disability, calcium intakes were sufficient, while total energy and vitamin D intakes were not. In the vitamin D intervention studies, 44 children and adolescents with severe motor disability and 138 adults with ID were studied. After baseline blood samples, the children were divided into two groups; those in the treatment group received 1000 IU peroral vitamin D3 five days a week for 10 weeks, and subjects in the control group continued with their normal diet. Adults with ID were allocated to receive either 800 IU peroral vitamin D3 daily for six months or a single intramuscular injection of 150 000 IU D3. Blood samples were obtained at baseline and after treatment. Serum concentrations of 25-OH-vitamin D (S-25-OHD) were low in all subgroups before vitamin D intervention: in almost 60% of children and in 77% of adults the S-25-OHD concentration was below 50 nmol/L, indicating vitamin D insufficiency. After vitamin D intervention, 19% of children and 42% adults who received vitamin D perorally and 12% of adults who received vitamin D intramuscularly had optimal S-25-OHD (>80 nmol/L). This study demonstrated that low BMD and peripheral and spinal fractures are common in children with severe motor disabilities. Vitamin D status was suboptimal in the majority of children with motor disability and adults with ID. Vitamin D insufficiency can be corrected with vitamin D supplements; the peroral dose should be at least 800 IU per day.
Resumo:
Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.