942 resultados para Blocking oscillators
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.
Resumo:
Targeting mTOR (mammalian target of rapamycin) is an effective approach in the treatment of advanced RCC (renal cell carcinoma). Rapamycin-like drugs (rapalogues) have shown clinical activities and have been approved for the treatment of RCC. Recently, with the development of ATP-competitive inhibitors of mTOR, therapies targeting mTOR have entered a new era. Here, we discuss the biological relevance of blocking mTOR in RCC and review the mechanisms of action of rapalogues in RCC. We also advance some perspectives on the use of ATP-competitive inhibitors of mTOR in RCC.
Resumo:
Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.
Resumo:
The effects of azadirachtin A, a tetranortriterpenoid from the neem tree Azadirachta indica J., on both development and interaction between Trypanosoma cruzi, the causative agent of Chagas' disease, and its vector Rhodnius prolixus were studied. Given through a blood meal, a dose-rsponse relationship of azadirachtin was established using antifeedant effect and ecdysis inhibition as effective parameters. A singlo dose of azadirachtin A was able to block the onset of mitosis in the epidermis and ecdysteroid titers in the hemnolymph, determined by radioimmuneassay, were too low for an induction of ecadysis. The survival of T. cruzi was also studied in R. prolixus treated with the drug. If the trypomastigotes were fed in presence of azadirachtin A the number of parasites drastically decreased. If the drug was applied after infection of the bug with T. cruzi, the parasite was still abolished from the gut. If the insect was pretreated with azadirachtin A before infection the same observation was obtained. A single dose of azadirachtin A was enough for a permanent resistance of the insect host against its reinfection with T. cruzi and for blocking the ecdysis for a long time. The effects of azadirachtin A on the hormonal balance of the host and growth inhibition of the parasite will be discussed on the basis of the present results.
Resumo:
A new serological assay dot-dye-immunoassay (dot-DIA) was evaluated for the diagnosis of schistosomiasis mansoni. This method consist of four steps: (a) biding of antigens to a nitrocellulose membrane (NC); (b) blocking of free sites of the NC; (c) incubation in specific primary antibody; (d) detection of primary antibody reactivity by color development using second antibody coupled to textile dyes. Sera from 82 individuals, 61 with Schistosoma mansoni eggs in the stool and 21 stool negative were tested by ELISA, dot-ELISA, and dotDIA. A high level of agreement between the methods tested was observed for all sera tested: ELISA x dot-ELISA: 95.1%, ELISA x dot-DIA: 92.7% and dot-ELISA x dot-DIA: 97.6%. In this study, dot-DIA proved to be a feasible, sensitive, rapid and practical test for the diagnosis of shcistosomiasis.
Resumo:
Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.
Resumo:
Malaria transmission-blocking immunity has been studied in natural malaria infections in man, during infections in animals and following artificial immunization of animals with sexual stage malaria parasites. Effective immunity, which prevents infectivity of a malarial infection to mosquitoes, has been observed under all of these circumstances. Two general types of effector mechanism have been identified. One is an antibody mediated mechanism which acts against the extracellular sexual stages of the parasite within the midgut of a blood feeding mosquito. The other is a cytokine mediated mechanism which inactivates the gametocytes of the parasites while in the circulation of the vertebrate host. Both effects have been observed during natural infections and following artificial immunization. The basis of induction of transmission-blocking immunity, including the nature of the memory for such immunity, however, may be very different in different host/parasite systems and during natural infection of following artificial immunization. Following artificial immunization a strong immune memory for transmission blocking immunity has been observed in animal systems. By contrast, following natural infections in man immune memory for transmission blocking immunity has been found to be weak and short lived if it occurs at all. It is suggested that the immunogens which induce natural transmission blocking immunity may be CD4+ independent.
Resumo:
Background and Aims: Recently, single nucleotide polymorphisms (SNPs) in IL28B were shown to correlate with response to pegylated interferon-a (IFN) and ribavirin therapy of chronic HCV infection. However, the cause for the SNPs effect on therapy response and its application for direct anti-viral (DAV) treatment are not clear. Here, we analyze early HCV kinetics as function of IL28B SNPs to determine its specific effect on viral dynamics. Methods: IL28B SNPs rs8099917, rs12979860 and rs12980275 were genotyped in 252 chronically HCV infected Caucasian naïve patients (67% HCV genotype 1, 28% genotype 2-3) receiving peginterferonalfa- 2a (180 mg/qw) plus ribavirin (1000-1200 mg/qd) in the DITTO study. HCV-RNA was measured (LD = 50 IU/ml) frequently during first 28 days. Results: RVR was achieved in 33% of genotype 1 patients with genotype CC at rs12979860 versus 12-16% for genotypes TT and CT (P < 0.03). Significant (P < 0.001) difference in viral decline was observed already at day 1 (see Figure). First phase decline was significantly (P < 0.001) larger in patients with genotype CC (2.0 log) than for TT and CT genotypes (0.6 and 0.8), indicating IFN anti-viral effectiveness in blocking virion production of 99% versus 75-84%. There was no significant association between second phase slope and rs12979860 genotype in patients with a first phase decline larger than 1 log. HCV kinetics as function of IL28b SNP. The same trend (not shown) was observed for HCV genotype 2-3 patients with different SNP genotype distribution that may indicate differential selection pressure as function of HCV genotype. Similar results were observed for SNPs rs8099917 and rs12980275, with a strong linkage disequilibrium among the 3 loci allowing to define the composite haplotype best associated with IFN effectiveness. Conclusions: IFN effectiveness in blocking virion production/ release is strongly affected by IL28B SNPs, but not other viral dynamic properties such as infected cell loss rate. Thus, IFN based therapy, as standard-of-care or in combination with DAV, should consider IL28B SNPs for prediction and personalized treatment, while response to pure DAV treatment may be less affected by IL28B SNPs. Additional analyses are undergoing to pinpoint the SNP effect on IFN anti-viral effectiveness.
Resumo:
For many years the epidemiological significance of immunity in human schistosomiasis has been the subject of inconclusive debate. Recently, the results of studies from Brazil and Kenya, on Shistosoma mansoni and from Zimbabwe and The Gambia on S. haematobium have confirmed the importance of protective immunity. In communities in endemic areas the development of immunity to infection only occurs after many years of exposure. In part this due to the slow development of antibodies wich are protective but also to the earlier development of antibody isotypes which lack protective capacity and wich are capable of interfering with the functioning of protective antibodies. Protective antibodies appear to be of the IgE class but some IgG subclasses may be also be important. Initially, blocking antibodies were thought to be predominantly IgM and IgG2 but IgG4 also seems to posses blocking activity. The early production of blocking antibodies and late production of protective antibodies may be indicative of cytokine induced immunoglobulin class swiching caused by the sequential involvment of different lymphokines.
Resumo:
In C57Bl/6 strain mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni immune elimination of challenge parasites occurs in the lungs. Leococytes were recovered from the lungs of such mice by bronchoalveolar lavage and cultured in vitro with larval antigen; the profile of cytokines released was then analyzed. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes wich produced abundant quantitties of IFN-g and IL-3. Challenge of vaccinated mice resulted in a second influx of IFN-g nd IL-3- producing cells, earlier than after vaccination or in the appropriate contropls. Ablation studies revealed that CD4+ T cells were the source of IFN-g. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures to stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells, When Ag. released challenge schistosomula is presented to these cells, they respond by secreting cytokines wich mediate the formation of cellular aggregates around the parasites, blocking their onward migration.
Resumo:
The dual function of eosinophils is clearly illustred in schistosomiasis. Well equipped in membrane receptors for immunoglobulins and complement, and due to the presence of granule basic proteins, eosinophils can become cytotoxic for parasite larvae and thus participate to protective immunity. However mediators can also exert their cytolytic effect on normal cells or tissues, inducing therefore pathology. Through ADCC mechanisms against schistosome larvae in vitro involving different antibody isotypes (IgG, IgE and IgA) and also in experiments performed in vivo, eosinophils have been clearly involved in protective immunity. Although no direct evidence of the protective role of eosinophils were brought in humans, the striking association of eosinophil-dependent cytotoxic antibody isotypes with resistance to reinfection (for instance IgE and IgA antibodies), whereas in vitro blocking antibody isotypes (IgG4, IgM) were detected in susceptible subjects, strongly, suggested the participation of eosinophils in antibody-dependent protective immune response. However eosinophils could also participate to granuloma formation around S. mansoni eggs and consequently to the pathological reactions induced by schistosomiasis.
Resumo:
In heavily infected young patients, there is a "non-congestive" phase of the disease with splenomegaly which can improve after chemoterapy. A strong correlation between hepatosplenic form and worm burden in young patients has been repeatedly shown. The pattern of vascular intrhepatic lesions seems to depend on two mechanisms: (a) egg embolization, with a partial blocking of the portal vasculature; (b) the appearance of small portal collaterals along the intrahepatic portal sistem. The role played by hepatitis B virus (HBV) and C virus infections in the pathogenesis of liver lesions is variably considered. Selective arteriography shows a reduced diameter of hepatic artery with thin and arched branches outlining vascular gaps. A rich arterial network , as described in autopsy cases, is usually not seen in vivo, except after splenectomy or shunt surgery. An augmented hepatic arterial flow was demonstrated in infected animals. These facts suggest that the poor intrahepatic arterial vascularization demonstrated by selective arteriography in humans is due to a "functional deviation"of arterial blood to the splenic territory. The best results obtained in treatment of portal hypertension were: esophagogastric desvascularization and splenectomy (EGDS), although risk of rebleeding persists; classical (proximal) splenorenal shunt (SRS) should be abandoned; distal splenorenal shunt may complicate with hepatic encephalopaty, although later and in a lower percentage than in SRS. Propranolol is currently under investigation. In our Department, schistosomotic patients with esophageal varices bleeding are treated by EGDS and, if rebleeding occurs, by sclerosis of the varices.
Resumo:
Schistosomiasis, the second major parasitic disease in the world after malaria affects at least 200 million people, 500 million being exposed to the risk of infection. It is widely agreed that a vaccine strategy wich could lead to the induction of effector mechanisms reducing the level of reinfection and ideally parasite fecundity would deeply affect the incidence of pathological manifestations as well as the parasite transmission potentialities. Extensive studies performed in the rat model have allowed the identification of novel effector mechanisms involving IgE antibodies and various inflammatory cell populations (eosinophils, macrophages and platelets) whereas regulation of immune response by blocking antibodies has been evidencial. Recent epidemiological studies have now entirely confirmed in human populations the the role of IgE antibodies in the acquisition of resistance and the association of IgG4 blocking antibodies with increased susceptibility. On the basis of these concepts, several schistosome glutathion S-transferase (Sm 28 GST) appears as a pronising vaccine candidate. Immunization experiments have shown that two complementary goals can be achieved: (a) a partial but significant reduction of the worm population (up to 60//in rats); (b) a significant reduction of parasite fecundity (up in the mice and 85//in cattle) and egg viability (up to 80//). At least two distinct immunological mechanisms account for these two effects. IgE antibodies appear as a major humoral component of acquired resistance whereas IgA antibodies appear as a major humoral factor affecting parasite fecundity. These studies seem to represent a parasite diseases through the identification of potentially protective antigens and of the components of the immune response which vaccination should aim at inducing.
Resumo:
The functional duality of eosinophils, involved in a protective response or in pathogenesis is illustrated in various parasitic infections. In schistosomiasis, eosinophils have been shown to mediate schistosomula killing, in the presence of antibodies. The association of eosinophil-dependent cytotoxic antibody isotypes with resistance of reinfection (IgE and IgA antibodies), whereas in vitro blocking antibody isotypes (IgG4, IgM) were detected in susceptible subjects, suggested a participation of eosinophils in antibody-dependent protective response. However eosinophils could participate to granuloma formation and consequently to the pathological reactions during schistosomiasis. Activation of eosinophils by antibodies, leading to release of granule proteins have been studied in patients with filariasis. Eosinophil peroxidase, EPO was released safter IgE-dependent activation whereas Eosinophil Cationic Protein, ECP, was released after IgG- and IgA-dependent activation of eosinophils, results suggesting a process of differential release mediators. Interactions between eosinophils and interleukins, and specially IL-5 are discussed. Whereas a receptor for IL-5 has been characterized on human eosinophils, recent studies have shown that eosinophils, expressed the messenger RNA encoding IL-5. These results associated to data showing the synthesis of other cytokines indicate that eosinophils are not only the source of cytotoxic mediators involved in the effector phase of immunity but also of growth and regualtory factors, participating to immunoregulation.
Resumo:
A dot enzyme linked immunosorbent assay (dot-ELISA) was previously developed to detect specific antibodies in rabbits sera immunized against FIA protein obtained from Yersina pestis. This antigen was covalently linked onto the surface of dacron (polyethyleneterephthalate). Here, standard conditions are described for the optimization of this procedure: an amount of 20 ng of FIA protein was fixed onto dacron; anti-rabbit IgG peroxidase conjugate diluted 1:8,000 and 30% non-fat instant milk as blocking substance were used throughout the method. This procedure was compared with that employing nitrocellulose as solid-phase which showed to be more sensitive. However, the method based on dacron did not show false positive reactions against non-immunized rabbits sera at low antigen amount and diluted anti-IgG peroxidase conjugate.